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IN THE UNITED STATES DISTRICT COURT
CENTRAL DISTRICT OF ILLINOIS

URBANA DIVISION
UNITED STATES OF AMERICA, )
Plaintiff, ;
VS. g Case No. 17-CR-20037
BRENDT A. CHRISTENSEN, ;
Defendant. g

THE UNITED STATES OF AMERICA’S RESPONSE TO THE
DEFENDANT’S MOTION TO EXCLUDE DNA AND SEROLOGY
TEST RESULTS AND REQUEST FOR DAUBERT HEARING

NOW COMES the United States of America, by John C. Milhiser, United States
Attorney for the Central District of Illinois, Eugene L. Miller and Bryan D. Freres,
Assistant United States Attorneys, and James B. Nelson, Department of Justice Trial
Attorney, and hereby requests that this Court deny the Defendant’s Motion to Exclude
DNA and Serology Test Results and Request for Daubert Hearing (R.119) because (1) the
probabilistic genotyping software used in this case is a reliable methodology to assign a
weight to a DNA match; (2) the defendant does not need and is not entitled to the source
code for the proprietary software; (3) comparing alleles by size (i.e., length) is a reliable
methodology to determine a match or inclusion of a sample to a known source; (4) the
presumptive serology test results using luminol and phenolphthalein are relevant and
not unfairly prejudicial; and (5) the confirmatory serology test results were obtained by

use of a reliable methodology.
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BACKGROUND

A federal grand jury charged the defendant, Brendt A. Christensen, with
kidnapping Yingying Zhang, and further alleged that he intentionally killed her in an
especially heinous, cruel, and depraved manner after substantial planning and
premeditation. (R.26) The defendant has made recorded statements that he took the
victim to his apartment and engaged in conduct that would result in her bleeding in the
apartment.

At trial, the United States intends to present expert testimony regarding the
identification of deoxyribonucleic acid (DNA) and blood identified from samples taken
from the defendant’s apartment, which confirm the defendant’s statements. Some of the
samples were identified by the use of luminol, which can detect minute traces of blood
even after an attempt has been made to wash the blood away. The samples were
analyzed at the FBI Laboratory in Quantico, Virginia, using reliable principles and
methods generally accepted in the scientific community. More specifically, in conducting
its DNA analysis, the FBI Laboratory compared the length of alleles and used
proprietary probabilistic genotyping software called STRmix™. Regarding the serology
results, the FBI laboratory used phenolphthalein and Takayama hemochromogen
testing.

Thereafter, the United States produced to the defendant multiple reports of
examinations and tests under Rule 16(a)(1)(F) of the Federal Rules of Criminal
Procedure, including reports concerning the results of the use of luminol, DNA testing,

and serology testing. The United States also disclosed to the defendant under Rule
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16(a)(1)(G) the written summary of the expected expert testimony of FBI Forensic
Examiner Amanda Bakker, which the United States intends to use during its case-in-
chief at trial, as well as proficiency testing regarding Ms. Bakker.

Additionally, the United States also provided the defendant with the notes (over
500 pages) of Ms. Bakker, the 1A Case File generated by the FBI Evidence Control
Coordinator, a CD Rom containing relevant raw computer data files, including raw data
collected in the course of a capillary electrophoretic run, and a CD Rom containing the
Laboratory Operations Manual and the Standard Operating Procedure to include the FBI
Approved Standards for Testimony and Report Language utilized by the DNA Unit and
STR frequency tables. The United States also made relevant STR databases and data files
related to the FBI's internal validation study available for the defense’s inspection at the
FBI Laboratory in Quantico, Virginia. Furthermore, the United States referred the
defense to multiple journals detailing the samples used in the databases, allele
frequencies, developmental validation studies of STRmix, and the FBI’s internal
validation study.

On July 11, 2018, after providing all of this information, the United States
requested that the defendant provide to the United States, pursuant to Rule 16(b)(1)(C), a
written summary of any testimony that the defendant intended to use under Rules 702,
703, or 705 of the Federal Rules of Evidence as evidence at trial, which described the
witness’s opinions, the bases and reasons for those opinions, and the witness’s

qualifications. (The request noted that, at the time, the Court’s scheduling order required



2:17-cr-20037-JES-JEH # 222 Page 4 of 31

disclosure of the defendant’s non-Rule 12.2 expert witnesses, including rebuttal experts,
on or before August 24, 2018.)
On August 24, 2018, the defendant disclosed that he intended to elicit expert
testimony on the following subject:
DNA, to rebut the government’s expert testimony if necessary, and to
challenge the reliability of the DNA and serology results from the FBI
Laboratory in Quantico, Virginia. The specific expert on this topic has not
yet been identified, although he/she will be associated with and/or
employed by Forensic Bioinformatics, 2850 Presidential Drive, Suite 160,
Fairborn, OH, 45324.
In the same disclosure, the defendant noted that he had not yet identified and/or
retained the individual witness who would testify and that, recognizing his obligations
under Rule 16(b)(1)(C), he would disclose all written summaries of any testimony that he
intended to offer as soon as it became available. To date, the defendant has not identified
his expert witness or disclosed a written summary of testimony beyond the paragraph
quoted above.l
On that same date, the defendant filed a motion to exclude the DNA and serology
test results and requested a Daubert hearing. (R.119) Regarding the DNA test results, the

defendant alleged that there are “potential problems with the application of probabilistic

genotyping software,” including “the scientific validity of probabilistic genotyping

IThe defendant recently filed a motion alleging that the lapse in government funding has
prevented retention of his mental health experts. (R.213) Although the United States responded
to the motion separately (R.219) and the motion does not discuss DNA experts, the United States
would note that the defendant had identified the employer of their DNA expert by August 24,
2018. As the lapse in government funding did not begin until December 22, 2018, it is unclear
why the defendant could not provide an expert report, or at the very least, identify an expert
from the disclosed employer in the intervening four months.
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algorithms” and that the algorithms “are not free of subjectivity.” Therefore, the
defendant requested the Court (1) require the United States to disclose the source code
for STRmix to be examined for errors by a defense expert; and (2) conduct a Daubert
hearing regarding the reliability of the probabilistic genotyping and STRmix.

Regarding the serology testing, the defendant requested that the Court (1) exclude
the results of any luminol? or phenolphthalein tests from trial under Rules 401, 402, and
403 of the Federal Rules of Evidence; and (2) conduct a Daubert hearing regarding the
reliability of any serology confirmatory testing, specifically, Takayama hemochromogen
testing.

On January 30, 2019, the defendant filed a supplemental memorandum in support
of his motion to exclude the DNA test results. The supplemental memorandum did not
disclose the identity of the defense DNA expert or a written report. Instead, the
defendant raised a new issue. He claimed that the FBI's DNA test results are unreliable
because he alleges the FBI analyst should have used a new DNA analysis methodology
referred to as next-generation sequencing (NGS), rather than the procedure that has been
used for years at the FBI Laboratory and at forensic laboratories throughout the United

States.

2Luminol was not used by the FBI Laboratory, but by the crime scene technicians at the
defendant’s apartment to identify locations from which to obtain suspected biological samples
for further testing. Because this evidence has evidentiary value beyond the identification of
blood itself and explains why and where the technicians obtained the samples they sent to the
FBI Laboratory, the evidence should be admitted, as argued, infra. Moreover, the technicians
who applied the luminol and obtained the samples would be testifying as fact witnesses, not
expert witnesses.
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The defendant still has not identified an expert who will testify regarding the
reliability of the evidence he challenges at any Daubert hearing or at trial. In fact, at a
previous hearing, the defendant indicated he intended merely to call the government
expert at the scheduled Daubert hearing and cross-examine her. This is improper. The
defendant should not be allowed, under the guise of a Daubert motion, to cross-examine
the government’s expert prior to trial, while shielding his own expert not only from
cross-examination, but also from disclosure and a possible Daubert challenge. The
defendant’s motion should be denied without a hearing, or in the alternative, the hearing
should be limited to relevant pre-trial matters, as argued, infra.3

APPLICABLE LAW

L. Scientific Testimony And Rule 702 Of The Federal Rules Of Evidence

In 1993, the Supreme Court interpreted Rule 702 of the Federal Rules of Evidence
as abandoning the prior requirement that a necessary precondition to admissibility of
scientific evidence was that it be generally accepted in the scientific community (the so-
called “Frye test”). Daubert v. Merrell Down Pharmaceuticals, Inc., 509 U.S. 579, 597 (1993).
Instead, the Court held that the Federal Rules of Evidence require a trial judge to ensure
“that an expert’s testimony both rests on a reliable foundation and is relevant to the task

at hand.” Id. The Supreme Court later suggested the same analysis might apply in

3 Based on the defendant’s claims, including his most recent claims made on January 30,
2019, the United States would intend to call FBI Forensic Examiner Jerrilyn M. Conway to rebut
the defendant’s claims, if an evidentiary hearing is held.

6
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assessing the reliability of non-scientific expert testimony. Kumho Tire Co. v. Carmichael,
119 S. Ct. 1167 (1999).

In 2000, Rule 702 was amended in response to Daubert and Kumho, causing the
Seventh Circuit to recently note that Rule 702 has superseded Daubert. Kansas City S. Ry.
Co. v. Sny Island Levee Drainage Dist., 831 F.3d 892, 900 (7th Cir. 2016); but see Manpower,
Inc. v. Ins. Co. of Pennsylvania, 732 F.3d 796, 806 (7th Cir. 2013) (noting that “Daubert
interpreted an earlier version of Rule 702, but it remains the gold standard for evaluating
the reliability of expert testimony and is essentially codified in the current version of
Rule 702”). Rule 702 allows a qualified expert to testify if (a) the expert’s scientific
knowledge will help the trier of fact to understand the evidence or to determine a fact in
issue; (b) the testimony is based on sufficient facts or data; (c) the testimony is the
product of reliable principles and methods; and (d) the expert has reliably applied the
principles and methods to the facts of the case.

In evaluating whether the testimony is the product of reliable principles and
methods, a district court should focus solely on the reliability of the principles and
methods. The reliability of the ultimate conclusion is for the jury to decide, not the
district court during a pretrial hearing;:

Reliability, however, is primarily a question of the validity of the

methodology employed by an expert, not the quality of the data used in

applying the methodology or the conclusions produced. “The soundness of

the factual underpinnings of the expert's analysis and the correctness of the

expert's conclusions based on that analysis are factual matters to be

determined by the trier of fact . . .. Rule 702’s requirement that the district
judge determine that the expert used reliable methods does not ordinarily
extend to the reliability of the conclusions those methods produce — that is,

whether the conclusions are unimpeachable.” The district court usurps the

7
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role of the jury, and therefore abuses its discretion, if it unduly scrutinizes

the quality of the expert's data and conclusions rather than the reliability of

the methodology the expert employed.

Manpower, 732 F.3d at 806 (citations omitted) (reversing district court where it
“supplanted that adversarial process with its admissibility determination”); see also
Stollings v. Ryobi Techs., Inc., 725 F.3d 753, 766 (7th Cir. 2013) (finding that trial “judge’s
exclusion of . . . expert testimony on reliability grounds intruded too far into the
province of the jury”); In re Processed Egg Products Antirust Litigation, 81 F. Supp. 3d 412,
416 (E.D. Pa. Jan. 26, 2015) (“Proponents of expert testimony do not ‘have to prove their
case twice —they do not have to demonstrate to the judge by a preponderance of the
evidence that the assessments of their experts are correct, they only have to demonstrate
by a preponderance of evidence that their opinions are reliable.””) (citations omitted).

In assessing the reliability of a scientific expert’s principles and methods, a district
court should look at factors such as (1) whether the scientific theory or technique can be
and has been tested; (2) whether the theory or technique has been subjected to peer
review and publication; (3) whether a particular technique has a known potential rate of
error; and (4) whether the theory or technique is generally accepted in the relevant
scientific community. See Schultz v. Akzo Nobel Paints, LLC, 721 F.3d 426, 431 (7th Cir.

2013) (citing Daubert).
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IL. DNA Testing Using Probabilistic Genotyping Software

As long ago as 2009, the Supreme Court stated that “DNA testing has an
unparalleled ability both to exonerate the wrongly convicted and to identify the guilty. It
has the potential to significantly improve both the criminal justice system and police
investigative practices.” Dist. Attorney’s Office for Third Judicial Dist. v. Osborne, 557 U.S.
52, 55 (2009). The Supreme Court’s acceptance of DNA testing has only grown over the
years: “The advent of DNA technology is one of the most significant scientific
advancements of our era. The . . . utility of DNA identification in the criminal justice
system is already undisputed. Since the first use of forensic DNA analysis to catch a
rapist and murderer in England in 1986, law enforcement, the defense bar, and the
courts have acknowledged DNA testing’s” reliability. Maryland v. King, 469 U.S. 435, 442
(2013) (citation omitted).

Thus, the results of DNA tests are universally admitted by courts in the United
States, which have found that DNA analysis has the capacity to consistently, and with a
high degree of certainty, demonstrate a connection between an evidentiary sample and a
specific individual source. Osborne, 5557 U.S. at 80 (Alito, J. concurring) (“DNA tests can,
in certain circumstances, establish to a virtual certainty whether a given individual did
or did not commit a particular crime.”) (citing Harvey v. Horan, 285 F.3d 298, 305 (4th Cir.
2002)). In fact, DNA testing is so well-accepted, that Congress had codified it in the
United States Code. 18 U.S.C. § 3600. In 2013, the Supreme Court recognized that,

although current DNA technology made it “possible to determine whether a biological



2:17-cr-20037-JES-JEH # 222 Page 10 of 31

tissue matches a suspect with near certainty,” “[fJuture refinements may improve
present technology.” King, 569 U.S. at 443.

Those future refinements have included the use of probabilistic genotyping and
related software, such as STRmix. See United States v. Morgan, 675 F. App’x 53, 56 (2d
Cir.), cert. denied, 138 S. Ct. 176 (2017) (noting that the New York Office of the Chief
Medical Examiner was “discontinuing its use of LCN testing in favor of newer
technology that produces reliable results,” namely, probabilistic genotyping and new
STR analysis software); see also United States v. Lee, No. 17-3559, 2018 WL 6600956 (2d Cir.
Dec. 14, 2018) (rejecting defendant’s challenge to use of STRmix probabilistic genotyping
software).

Relevant here, probabilistic genotyping and STRmix software only come into play
after an analyst finds a match between two DNA samples. At that point, the analyst
assigns a weight to the match through statistical analysis. STRMix is a probabilistic
genotyping software that calculates a likelihood ratio for DNA typing results. The FBI
began using STRMix in its forensic laboratories in 2015 to assist in assigning statistical
weights to its DNA typing results.

Every court to have considered the issue has found that the use of probabilistic
genotyping and STRmix software are scientifically reliable and the results admissible.
See, e.g., People v. Smith, No. 340845, 2018 WL 4926977, at *8 (Mich. App. Oct. 9, 2018);
People v. Muhammad, No. 338300, 2018 WL 4927094, at *5 (Mich. App. Oct. 2, 2018); People
v. Blash, No. 2015-CR-156, 2018 WL 4062322, at *8 (V.I. Super. Aug. 24, 2018); United
States v. Pettway, No. 12-CR-103S, 2016 WL 6134493, at *3 (W.D.N.Y. Oct. 21, 2016); People

10
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v. Bullard-Daniel, 42 N.Y.S5.3d 714, 725-26 (N.Y. Cty. Ct. Mar. 10, 2016); see also United
States v. Oldman, No. 18-CR-0020, Document 227, at 12 (D. Wyo. Dec. 31, 2018)
(unpublished opinion) (finding probabilistic genotyping and STRmix software “are
scientifically valid, proven, and tested”); Smith v. State, No. 12-16-139-CR, 2017 WL
1534048, at *2 (Tex. App.-Tyler Apr. 28, 2017) (“The new [STRmix] software can reliably
consider all the available data”); State v. Wakefield, 9 N.Y.S5.3d 540, 547 (N.Y. Sup. Ct.
2015) (holding as matter of first impression that DNA evidence using computerized
probabilistic genotype analysis (i.e., TrueAllele) is reliable and admissible).
III. DNA Testing Comparing Alleles By Length

Relevant to the defendant’s supplemental memorandum, all forensic DNA
analysts - including the analyst in this case - compare subject DNA samples with known
DNA samples by comparing the size (i.e., length) of alleles at different locations (or loci).
The current approach is to compare the length of these alleles for the 23 short tandem
repeat (STR) loci most commonly used in the United States and the world. For example,
in this case, the analyst conducted a comparison between the victim’s known DNA to
the DNA recovered from various samples from the defendant’s apartment and
calculated a likelihood ratio. Given the DNA results, the likelihood ratios ranged from
1.4 quintillion (1.4 x 108) to 97 octillion (9.7 x 1028). These likelihood ratios provide
support that the victim was a contributor to the DNA in the defendant’s apartment.

Next-generation sequencing (NGS) of the alleles is a potential improvement on
current technology, much like probabilistic genotyping and STRmix software.

Nonetheless, unlike those improvements, NGS has not yet been fully developed and

11
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validated for forensic laboratories and is not commonly used in forensic analysis.
Moreover, NGS is simply a more discriminating technology; it in no way suggests that
the long-established methods of DNA analysis used in this case are unreliable. In fact,
NGS would not result in an exclusion; it would be used simply to bolster the likelihood
ratios determined through length analysis. Here, given the incredibly high likelihood
ratios already generated (1.4 quintillion to 97 octillion), NGS would add little to the
relevant analysis. More importantly, the development of NGS methodologies do not in
any way draw into question the reliability of the DNA results in this case.
IV.  Serology Testing

Forensic serology is the scientific identification and analysis of bodily fluids,
including blood, on items of evidence. Today, serology is not used for source attribution
because forensic DNA identity tests are more sensitive, specific, and easier to perform.
Instead, serology is used to identify the tissue type of stain or biologic material. DNA,
because it is present in all cells and tissues, cannot be used to distinguish between tissue
types. At crime scenes, stains may or may not be obvious. Luminol sprayed over
surfaces will cause blood to fluoresce bright blue under UV irradiation. The test is so
sensitive it can detect minute traces of blood even after an attempt has been made to
wash the blood away.

Serologic tests can be presumptive or confirmatory. Presumptive tests are
typically chemical color tests, which are generally sensitive, but nonspecific.

Confirmatory tests are highly specific, but can lack sensitivity. Serologic testing, which

12
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does not interfere with DNA tests, is followed by DNA testing, which itself is specific to
humans.

Presumptive blood tests take advantage of the peroxidase activity of blood. For
example, in the presence of hydrogen peroxide solution, blood will cause
phenolphthalein to turn pink. The confirmatory Takayama hemochromogen test
procedure produces a positive result where the ferrous iron from hemoglobin reacts
with pyridine to create red feathery crystals of pyridine ferroprotoporphyrin.

“[Clourts . . . regularly admit evidence of Luminol testing for the presence of
blood . ...” Cooper v. Brown, 565 F.3d 581, 596 (9th Cir. 2009) (Fletcher, ]J. dissenting). For
example, a district court has noted that “[w]e have held that luminol testing, as a
scientific procedure, is sufficiently reliable for what it purports to do: presumptively
indicate the possible presence of blood.” Dodd v. Workman, No. CIV-06-140-D, 2011 WL
3299101, at *60 (W.D. Okla. Aug. 2, 2011) (citing Robedeaux v. State, 866 P.2d 417, 425, cert.
denied, 513 U.S. 833 (1994)), aff'd in part, re’d in part on other grounds sub nom. Dodd v.
Trammell, 753 F.3d 971 (10th Cir. 2013); c¢f. Holtzer v. Davis, No. 2:06-CV-169, 2009 WL
723881, at *1 (W.D. Mich. Mar. 11, 2009) (atfirming conviction where testimony
presented at trial was that luminol testing was a first line test for blood and could
possibly detect the presence of blood).

Similarly, the confirmatory serological test used here (the Takayama
hemochromogen test) to identify the biologic material as blood has been found reliable
and admissible. See, e.g., United States v. Williams, No. 06-79, 2013 WL 4518215 at (*9 (D.

Haw. Aug. 26, 2013) (rejecting Daubert challenge to the Takayama confirmatory test,

13
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which “was developed between 1910 and 1912 and has become a standard confirmatory
test for the presence of blood”).
V. No Pretrial Hearing Is Required to Admit Scientific Testimony Under Rule 104

Under Rule 104(a) of the Federal Rules of Criminal Procedure, the proponent of
expert testimony has the burden of demonstrating it satisfies Rule 702’s requirements by
a preponderance of the evidence. Fed. R. Evid. 702, advisory committee’s note to 2000
amendment (citing Bourjaily v. United States, 483 U.S. 171 (1987)). This burden may be
satisfied without an evidentiary hearing, as Rule 104(a) specifically provides that the
court is not bound by evidence rules in making its determination; in other words, a
defendant is not entitled to an evidentiary hearing under Rule 702 simply because he
requests one.

In fact, where the proponent proffers sufficient evidence that the expert used
reliable principles and methods, and the defendant presents no evidence to the contrary,
the trial court should not hold an evidentiary hearing. See, e.g., United States v. Eastman,
645 F. App’x 476, 481 (6th Cir. 2016) (affirming admission of DNA testimony at trial
without Daubert hearing where defendant “present[ed] no groundbreaking evidence that
leads us to question” the reliability of DNA evidence); United States v. Pettway, No. 12-
CR-103S, 2016 WL 6134493, at *2 (W.D.N.Y. Oct. 21, 2016) (denying Daubert hearing
regarding DNA evidence based on defendant’s failure to present any expert opinion or
scientific evidence challenging reliability of STRmix); United States v. Fell, No. 5:01-CR-
12-01, Document 914, at 9 (D. Vt. Sept. 19, 2016) (unpublished opinion) (refusing to hold

evidentiary hearing on admissibility of DNA evidence because defense arguments went

14
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to weight of evidence and did not “raise credible systemic concerns about the practice
and use of DNA identification”); United States v. McCluskey, 954 F. Supp. 2d 1224, 1233-34
(D.N.M. 2013) (finding pretrial Daubert hearing on DNA not warranted because
sufficient record to determine reliability); see also, e.g., United States v. John, 597 F.3d 263,
274-75 (5th Cir. 2010) (holding district court did not err in refusing to hold a Daubert
hearing on fingerprint evidence because reliability of the technique had already been
tested in the adversarial system); Murray v. Marina Dist. Dev. Co., 311 F. App’x 521, 523
(3d Cir. 2008) (finding “no benefit in holding a Daubert hearing” where sufficient record
to ascertain methodology and make reliability determination); United States v. Crisp, 324
F.3d 261, 268 (4th Cir. 2003) (“Under Daubert, a trial judge need not expend scarce
judicial resources reexamining a familiar form of expertise every time opinion evidence
is offered. In fact, if a given theory or technique is ‘so firmly established as to have
attained the status of scientific law,” then it need not be examined at all, but instead may
properly be subject to judicial notice); United States v. Nichols, 169 F.3d 1255, 1263 (10th
Cir. 1999) (finding trial court did not err in declining to hold a preliminary evidentiary
hearing where the challenged evidence did not involve any new scientific theory or
testing methodologies).

Finally, over 20 years ago, the Eighth Circuit held that district courts were not
required to conduct Daubert hearings regarding the reliability of DNA analysis because

they could take judicial notice of its reliability:

15
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Having considered all of Beasley's arguments, we conclude that the District

Court did not abuse its discretion in admitting the government's evidence

showing a “match” between the DNA in the hairs found in the rubber mask

and Beasley's DNA. Moreover, we believe that the reliability of the PCR

method of DNA analysis is sufficiently well established to permit the courts

of this circuit to take judicial notice of it in future cases.
United States v. Beasley, 102 F.3d 1440, 1448 (8th Cir. 1996). Cf. United States v. Beverly, 369
F.3d 516, 528 (6th Cir. 2004) (“[t]he use of nuclear DNA analysis as a forensic tool has
been found to be scientifically reliable by the scientific community for more than a
decade”).

RESPONSE

L. The Reliability Of DNA Testing Using Probabilistic Genotyping And Strmix

The specific issue raised by the defendant’s motion is the reliability of the
principles and methods used to analyze the DNA in this case. More specifically, the
defendant’s motion raises “concerns about the scientific validity of probabilistic
genotyping algorithms” based primarily on one cited article. (R.119 at 7) In other words,
the defendant has not challenged (1) the qualifications of Ms. Bakker; (2) whether her
testimony would help the jury understand the evidence or to determine a fact in issue;
(3) whether her expected testimony is based on sufficient facts or data; or (4) whether she
has reliably applied the principles and methods to the facts of the case. Thus, the sole
issue raised by the defendant’s motion as to the DNA analysis is the reliability of
probabilistic genotyping, STRmix, and the length analysis of alleles.

As noted earlier, there are four areas the courts have identified as particularly

relevant to whether scientific principles and methods are reliable: (1) whether the

16
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scientific technique can be and has been tested; (2) whether the theory or technique has
been subjected to peer review and publication; (3) whether a particular technique has a
known potential rate of error; and (4) whether the theory or technique is generally
accepted in the relevant scientific community. In this case, application of each of those
factors shows that the use of probabilistic genotyping and STRmix software is a reliable
scientific methodology.

As the court addresses reliability of the methodology, it is helpful to realize that
STRmix “represents an evolution in the process of DNA interpretation using existing
accepted biological models and scientific principles rather than a completely new or
novel approach to DNA analysis.” Pettway, 2016 WL 6134493, at *2 (quoting John P.
Simich, Ph.D., Director of the Erie County Forensic Laboratory).

A. Testing

Probabilistic genotyping using STRmix has been subjected to validation studies.
First, the developer itself subjected STRmix to various different validation studies.
Muhammad, 2018 WL 4927094, at *3; Blash, 2018 WL 4062322, at *7. The mathematics
underlying the software involve a well-established method, and the development team
performed the first 500 steps of the mathematics chain by hand, performed “true donor”
and “false donor” tests, and tested STRmix against other software. Muhammad, 2018 WL
4927094, at *3; see also Oldman, No. 18-CR-0020, Document 227, at 12 (finding

probabilistic genotyping process and STRmix software “are scientifically valid, proven,

and tested”).

17
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Moreover, the FBI also conducted its own internal validation study prior to
implementing STRMix. The validation study involved the use of over 300 mixtures of
DNA from known contributors and around 200 non-contributor DNA samples that were
analyzed against those mixtures. In total, the study included about 60,000 tests. The
tindings were published in the peer-reviewed journal, Forensic Science International:
Genetics. Blash, 2018 WL 4062322, at *7. Other laboratories have also subjected STRmix to
validation studies. Muhammad, 2018 WL 4927094, at *3.

Attached hereto are the published findings of several of these validation studies.
See, e.g., Scientific Working Group on DNA Analysis Methods (SWGDAM) Guidelines for the
Validation of Probabilistic Genotyping Systems (June 15, 2015) (Exhibit A); Developmental
validation of STRmix, expert software for the interpretation of forensic DNA profiles, Forensic
Science International: Genetics 23 (2016) 226-239 (Exhibit B); Internal validation of STRmix
for the interpretation of single source and mixed DNA profiles, Forensic Science International:
Genetics 29 (2017) 126-144 (Exhibit C); Internal validation of STRmix — A multi laboratory
response to PCAST, Forensic Science International: Genetics 34 (2018) 11-14 (Exhibit D).

B. Peer Review and Publication

STRmix has been favorably reviewed in at least 19 peer-reviewed scientific
journals, Smith, 2018 WL 4926977, at 8*, and peer-reviewed in more than 90 articles.
Pettway, 2016 WL 6134493, at *2. Research regarding the reliability, validation, and
underlying principles of STRMix has been published in a multitude of peer-reviewed
journals such as Forensic Science International, Australian Journal of Forensic Sciences, and

Journal of Forensic Sciences. Blash, 2018 WL 4062322, at *6. The National Institute for

18
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Standards Technology presented scientific information on probabilistic genotyping, and
SWGDAM published guidelines for probabilistic genotyping in June 2015; STRmix was
presented to the New York Commission on Forensic Science, which adopted the DNA
Subcommittee’s recommendation to accept STRmix for casework. Muhammad, 2018 WL
4927094, at *4. The DNA Subcommittee consisted of scientists in the fields of molecular
biology, population genetics, laboratory standards and quality assurance, and forensic
science. Bullard-Daniel, 42 N.Y.S.3d at 723.

Additionally, the FBI has instituted several standard operating procedures and
policies that govern the DNA Casework Unit’s work, as well as the use of STRMix, and
those policies and procedures align with the standards established by the International
Organization for Standardization (ISO) and Quality Assurance Standards for Forensic
DNA Testing Laboratories. Blash, 2018 WL 4062322, at *6. The FBI laboratories undergo
accreditation by an outside accreditation body to ensure that the laboratories are
satisfying ISO standards for testing laboratories, and the DNA Casework Unit
specifically is audited against national DNA casework standards by other DNA experts
in the field. Blash, 2018 WL 4062322, at *6.

C. Rate of Error

There is no evidence that STRmix’s software has ever caused a false inclusion, and
its developers only know of two errors causing false exclusions, both of which occurred
during specific testing exercises rather than when used in an actual case. Smith, 2018 WL

4926977, at *8. In fact, STRmix has been subjected to “massive tests of false donors,
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hundreds of millions,” and the software had not made a “false positive” identification.
Muhammad, 2018 WL 4927094, at *4.

D. Generally Accepted in Relevant Scientific Community

By 2018, STRmix was being used in at least 17 laboratories in the United States,
including the laboratories of the FBI and the United States Army, and at least 65
additional laboratories have purchased the software are in the validation process for
transitioning to its use. Smith, 2018 WL 4926977, at *8. Additionally, all but one of the
states in Australia use STRmix, and there have been at least 40,000 cases processed in
Australia without any discernable error. Muhammad, 2018 WL 4927094, at *4. To date,
STRmix software is now being used by 43 labs in the United States, all 9 state and
territory labs in Australia, and 11 labs elsewhere in the world. https:/ /johnbuckleton.
wordpress.com /strmix/.

E. No Evidentiary Hearing Is Warranted

Given that the reliability of probabilistic genotyping and STRmix has been
established in numerous courts based on its extensive validation, favorable peer review,
low error rate, and general acceptance in the relevant scientific community, the United
States has met its burden of establishing the reliability of the methodology by a
preponderance of the evidence. The defendant has offered no expert or other scientific
evidence to support a challenge to the reliability of the methodology. Therefore, the
Court should deny his motion without an evidentiary hearing.

Moreover, it would not be appropriate to allow the defendant the opportunity to

cross-examine the government expert prior to trial as to the reliability of her conclusions,
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as opposed to the reliability of the methodology. The defendant has already shown a
general litigation strategy of using pre-trial hearings to cross-examine government
witnesses on matters, such as the reliability of an expert’s opinion, that should not be
permitted until trial.

II. The Defendant’s Request To Obtain The Source Code For Strmix

In his motion, the defendant requests that the Court order the United States to
provide the source code for the STRmix software to the defendant for review by an
unidentified “defense expert.” This appears to be a discovery request. Prior to filing the
motion, the defendant did not request the source code from the United States. On
July 11, 2018, the United States informed the defendant in response to a prior request as
to any commercial software programs used in the DNA testing in this case, that the
United States used STRmix software and directed the defendant to its website at
strmix.esr.cir.nz/.

The source code for STRmix commercial software is proprietary information that
is not in the possession of the FBI or the United States. Therefore, the United States is
unable to provide the defendant with the source code.* Regardless, for the numerous
reasons set forth, supra, review of the proprietary source code is not necessary to find
that using STRmix software to assist with probabilistic genotyping is a reliable

methodology. See., e.g., Blash, 2018 WL 4062322, at *8 (finding STRmix scientifically valid,

4 The STRmix website provides information for defense legal teams on how to access
STRmix software. See http:/ /strmix.esr.cri.nz/assets/Uploads/Defence-Access-to-STRmix-
April-2016.pdf.
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reliable, and relevant despite defendant’s argument that he needed access to its source
code); http:/ /strmix.esr.cri.nz/assets/ Uploads/Defence-Access-to-STRmix-April-
2016.pdf (“The developers consider that the STRmix™ software is best tested by
examining the Extended Output for the compiled STRmix™ software, rather than the
source code. The Extended Output of STRmix™ contains the intermediate steps of the
STRmix™ interpretation process, allowing individual forensic laboratories, or experts for
the defence, to verify the accuracy of STRmix™.”)
III. Comparing Alleles By Length Is A Reliable Methodology

In his supplemental memorandum, the defendant requests that the Court bar the
admission of the DNA test results simply because a more discriminating methodology,
i.e., next-generation sequencing (NGS), is being developed. As discussed, infra, the
method used in this case of comparing the length of alleles is the standard method used
by DNA forensic analysts. The United States has found no case that has found this
method to be unreliable, and the defendant cites none in his supplemental
memorandum. Moreover, the United States has found no case finding that NGS
somehow renders prior DNA methodologies unreliable.> Again, the defendant cites to no
such cases, but relies solely on citations to various literature. For example, no court has
excluded fingerprint evidence as unreliable just because DNA evidence might be more

discriminating.

5In fact, the United States has found no case finding that the use of NGS itself is reliable
and admissible, nor has the defendant cited any. No doubt, if the United States attempted to
introduce evidence of NGS, the defendant would argue (as he has regarding STRmix) that it has
not yet been sufficiently validated. If the defendant’s argument were accepted, no DNA test
results would be admitted in courts throughout the United States.
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Importantly, the literature cited by the defendant does not support his claim that
“evaluating an allele by length alone is, in fact, not the most reliable way to interpret
DNA.” (Def. Memo. at 5) While NGS has the potential to be more discriminating, none of
the literature suggests it is more reliable than prior methodologies. Moreover, where the
likelihood ratios are already in the quintillions, as in this case, NGS offers little forensic
improvement.

By way of analogy, a witness may identify a suspect that they already know by
his height, weight, skin color, a scar on his face, a tattoo on his forehead, and a gold
tooth. To say the witness was not as discriminating as he could be (e.g., he could not
number the hairs on the suspect’s head), is not to question the reliability of the
identification. None of the literature cited by the defendant supports excluding the DNA
test results in this case, and no court has done so based on the ongoing development of
“next-generation sequencing.” The defendant’s argument that the DNA results in this
case should be excluded based on his unsupported claim that NGS is the only
appropriate DNA testing method should be rejected.

IV.  The Admissibility Of Luminol And Phenolphthalein Testing.

In his motion, the defendant also requests the Court to bar the admission of
evidence of the results of the use of luminol or phenolphthalein testing as more
prejudicial than probative under Rule 401, 402, and 403 of the Federal Rules of Evidence.
The defendant first argues that, because these tests are not conclusive, they are

irrelevant. This argument conflicts with the plain language of Rule 401(a), which defines

23



2:17-cr-20037-JES-JEH # 222 Page 24 of 31

evidence as relevant if “it has any tendency to make a fact more or less probable than it
would be without the evidence.”

In other words, evidence need not be conclusive to be relevant; it only must make
a fact of consequence more or less probable. The results of the luminol testing in this case
make it more probable that blood was found in the defendant’s apartment. Thus, the
evidence is highly relevant. Here, the defendant “mistakenly equates a presumptive, i.e.
inconclusive, scientific procedure with an unreliable, and therefore inadmissible, one. To
be admissible, evidence need not be irrefutably conclusive of anything; it must only tend
to make the existence of a particular fact of consequence more or less probable.” Dodd,
2011 WL 3299101, at *60.

Moreover, in the context of the other evidence in this case, the results of these
presumptive tests is highly relevant. First, where enough evidence remained for testing,
the presumptive testing identifying blood was confirmed by later testing and
corroborated by the results of DNA testing. Second, the identification, location, and
pattern of the blood (including human hand prints) were consistent with the defendant’s
own later recorded statements as to what occurred in the apartment. Third, the evidence
will show the defendant took extensive steps to clean the apartment after his alleged
offense, thereby preventing confirmatory testing, but leaving trace amounts that were
detected by the preliminary testing.

In 2010, the California Supreme Court addressed and rejected similar arguments

that the results of presumptive blood testing are irrelevant and unfairly prejudicial:
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The circumstance that presumptive tests for blood on a jacket that might
have been defendant’s indicated the jacket might have had bloodstains in a
pattern consistent with the murder in issue tends “in reason to prove or
disprove any disputed fact that is of consequence to the determination of
the action.” The factors raised in defendant's challenge to this evidence —
that the presumptive tests could not confirm the substance tested was
human blood, that confirmatory tests failed to confirm the presence of
blood, and that it is unknown when the jacket might have been exposed to
the substance that created the positive results — do not mean the test results
have no tendency in reason to establish that defendant shot Agent Cross.
Those issues affect the probative weight of the evidence, not whether the
test results meet the threshold requirement of relevancy. The trial court did
not abuse its discretion in finding this evidence was relevant.

Similarly, the trial court did not abuse its discretion by finding that the
danger of undue prejudice, confusion of the issues, or misleading the jury
did not substantially outweigh the evidence’s probative value. “ ‘The
“prejudice” referred to in Evidence Code section 352 applies to evidence
which uniquely tends to evoke an emotional bias against the defendant as
an individual and which has very little effect on the issues. In applying
section 352, “prejudicial” is not synonymous with “damaging.” * ” Evidence
need not be excluded under this provision unless it “poses an intolerable *
“risk to the fairness of the proceedings or the reliability of the outcome.” " ”
The testimony regarding the presumptive blood tests had no particularly
emotional component, nor did it consume an unjustified amount of time.
Further, because the defense fully explored the limitations of the
presumptive tests through cross-examination, there is no likelihood this
evidence confused or misled the jury. The trial court did not err, and
defendant's constitutional rights were not violated.

People v. Alexander, 235 P.3d 873, 924 (2010), as modified on denial of reh’g (Sept. 29, 2010);
see also Dyleski v. Grounds, No. 12-CV-05336, 2016 WL 3194997, at *34 (N.D. Cal. June 9,
2016) (no error admitting testimony that a portion of the overcoat tested presumptively
positive for blood, where it “responded fluorescently,” because any potential issues
went to the test’s weight, not admissibility).

Other states have joined California in admitting evidence of presumptive blood
tests. See, e.g., Com. v. Hetzel, 822 A.2d 747, 763 (Pa. Super. 2003) (phenolphthalein
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testing); State v. Canaan, 964 P.2d 681, 694 (Kan. 1998) (luminol testing); State v. Stenson,
940 P.2d 1239, 1264 (Wash. 1997) (en banc) (phenolphthalein testing); State v. Moseley, 445
S.E.2d 906, 912 (N.C. 1994) (phenolphthalein testing); Johnston v. State, 497 So.2d 863, 870
(Fla. 1986) (luminol testing).

The non-controlling, minority state cases cited by the defendant present different
factual situations, have been distinguished by their own courts, and do not counsel
against admission of presumptive test results in this case. For example, in the
Connecticut state case cited by the defendant, the police seized clothing and a pair of
black shoes from the defendant’s apartment; no blood was found on the clothing, but a
stain was found on one of the soles of the defendant’s shoes. State v. Moody, 573 A.2d
716, 722 (1990). The court, concerned that this isolated stain on the bottom of a shoe
might only be animal blood, held that it was error to admit it into evidence. Id. This is far
from the fact pattern presented here, where there is other substantial evidence tending to
establish that the blood is the victim’s blood, including DNA testing, the defendant’s
own statements, and the shape, pattern, and location of the stains revealed through the
use of luminol.

In fact, Connecticut’s own courts have distinguished Moody in precisely such a
situation. For example, a court found that where the results of the presumptive testing of
stains were also corroborated based on their shape, pattern, and location, “the facts in
the present case are sufficiently distinguishable from those in Moody so as to render
Moody inapplicable here.” State v. Downing, 791 A.2d 649, 654 (Conn. App. 2002)
(admitting evidence of presumptive blood tests). Moreover, multiple other courts have
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likewise distinguished Moody, including the Connecticut Supreme Court itself. See, e.g.,
State v. Grant, 944 A.2d 947, 971 (Conn. 2008) (holding trial court properly admitted
blood evidence because “Moody stands only for the proposition that, when the sole
evidence that a substance was blood is the result of a presumptive testing method . . . the
evidence is nonprobative”) (emphasis in original); State v. Jeffrey, 601 A.2d 993, 998
(Conn. 1991) (declining to extend Moody and noting that “challenges to the evidence do
not require its exclusion, however, because ‘evidence need not exclude all other
possibilities [to be relevant]; it is sufficient if it tends to support the conclusion, even to a
slight degree.””); Weinberg v. Comm’r of Correction, 962 A.2d 155, 166 (Conn. App. 2009)
(finding that admission of evidence that presumptive blood found on knife seized from
apartment “is easily distinguishable from Moody”).

Here, the blood was not identified as a small stain on the bottom of a shoe; it was
identified in significantly larger areas, including handprints, in the defendant’s
apartment. Some of the samples have been positively identified as blood (through
confirmatory testing) with the victim’s DNA located in those same samples. Moreover,
unlike in Moody, the other evidence in the case, including the defendant’s own
statements, establish the presence of the victim’s blood, making the presumptive test
results tending to establish the location of the blood highly relevant.

Similarly, the Arkansas state cases cited by the defendant do not warrant
exclusion of the presumptive testing in this case. In one case, the defendant wanted to
offer into evidence the results of a negative luminol test to prove the absence of blood, but

offered no evidence as to the likelihood of a false negative test. Houston v. State, 906
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S.W.2d 286, 287 (Ark. 1995). The court held that the district court did not abuse its
discretion in excluding the evidence of this novel use of luminol for lack of reliability
(not relevance). Id. It also noted that “luminol test results are not relevant per se . . .
without additional factors that relate that evidence to the crime . ...” Id. (emphasis
added). As noted above, there are many additional factors here that relate the luminol
evidence to the defendant’s alleged crime. Moreover, the Arkansas court’s decision in
Brenk v. State, 847 SW.2d 1, 9 (Ark. 1993), was based on now-outdated science. The court
was concerned with admitting preliminary testing because it “could not establish the
blood type of the samples or connect the samples in any way with the victim.” Id. With
the advent of DNA testing, analysts do not conduct blood type testing to connect the
samples to the victim; they use DNA testing. Here, such testing was used and confirms
the presence of the victim’s DNA in some of the same samples from the apartment that
were presumptively identified as blood.

Finally, the Alaska case cited by the defendant simply affirmed the district court’s
decision to exclude the preliminary testing because no confirmatory tests whatsoever
were conducted. State v. Fukusaku, 85 Haw. 462, 497, 946 P.2d 32, 67 (1997). Here,
confirmatory and DNA tests established the presence of blood and the victim’s DNA,
respectively, in the defendant’s apartment. Therefore, the evidence is not only relevant,
but as found by the majority of the courts to address the issue, its probative value is not

substantially outweighed by the danger of unfair prejudice. Fed. R. Evid. 403.
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V. The Reliability Of Takayama Hemochromogen Testing

Interestingly, after arguing that presumptive tests should not be admissible
without confirming blood tests (R.119 at 8-10), the defendant goes on to argue that
confirmatory testing is unreliable.® The defendant does not present any expert opinion or
scientific evidence, however, challenging the reliability of Takayama hemochromogen
testing. Instead, the defendant claims that, even though the test has been a standard
confirmatory test for blood for over 100 years, “nobody has ever taken the time to
validate such a test as reliable.” While he cites to articles that note that Takayama
hemochromogen testing itself does not distinguish between human blood and blood of
an animal, this does not indicate that the test is unreliable in identifying blood, only that
it has limitations. Moreover, he fails to note that, when coupled with DNA testing, the
test is capable of identifying a biological sample as human blood.

The Takayama hemochromogen test, which has long been in use to confirm the
presence of blood, has been found reliable and admissible. See, e.g., Williams, 2013 WL
4518215, at *9 (rejecting Daubert challenge). The defendant cites no case that supports his
challenge to the reliability of the confirmatory testing.

In fact, the defendant in Williams advanced the same arguments as the defendant
here, namely, that (1) the analyst failed to sufficiently document what she had done; and

(2) the test had not been validated. Id. The district court rejected these arguments

¢ The defendant also suggests that there is insufficient evidence to show Ms. Bakker
conducted the testing correctly, but as argued, supra, that is a matter for trial, not a pretrial
hearing under Rule 702. See Manpower, 732 F.3d at 806 (“Reliability, however, is primarily a
question of the validity of the methodology employed by an expert, not the quality of the data
used in applying the methodology or the conclusions produced.”).

29



2:17-cr-20037-JES-JEH # 222 Page 30 of 31

because (1) the analyst recorded her observations in a report; and (2) given that the
Takayama confirmatory test has been a standard confirmatory test for the presence of
blood for over 100 years, the lack of recent validation is unsurprising. Id. Moreover, the
court also noted that studies established that false positives using the Takayama test are
unlikely. Id. Therefore, the court found the defendant’s arguments went to the weight of
the evidence, not its admissibility. Id. The same is true of the defendant’s arguments
here.

WHEREFORE, the United States of America respectfully requests that this Court
deny the Defendant’s Motion to Exclude DNA and Serology Test Results and Request
for Daubert Hearing without an evidentiary hearing.

Respectfully submitted,
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Guidance is provided herein for the validation of probabilistic genotyping software used for the
analysis of autosomal short tandem repeat (STR) typing results. These guidelines are not
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intended to be applied retroactively. It is anticipated that they will evolve with future

developments in probabilistic genotyping systems.

Introduction

Probabilistic genotyping refers to the use of biological modeling, statistical theory, computer
algorithms, and probability distributions to calculate likelihood ratios (LRs) and/or infer
genotypes for the DNA typing results of forensic samples (“forensic DNA typing results”).
Human interpretation and review is required for the interpretation of forensic DNA typing results
in accordance with the FBI Director’s Quality Assurance Standards for Forensic DNA Testing
Laboratories’. Probabilistic genotyping is a tool to assist the DNA analyst in the interpretation
of forensic DNA typing results. Probabilistic genotyping is not intended to replace the human
evaluation of the forensic DNA typing results or the human review of the output prior to

reporting.

A probabilistic genotyping system is comprised of software, or software and hardware, with
analytical and statistical functions that entail complex formulae and algorithms. Particularly
useful for low-level DNA samples (i.e., those in which the quantity of DNA for individuals is
such that stochastic effects may be observed) and complex mixtures(i.e., multi-contributor
samples, particularly those exhibiting allele sharing and/or stochastic effects), probabilistic
genotyping approaches can reduce subjectivity in the analysis of DNA typing results.Historical
methods of mixture interpretation consider all interpreted genotype combinations to be equally
probable, whereas probabilistic approaches provide a statistical weighting to the different
genotype combinations. Probabilistic genotyping does not utilize a stochastic threshold. Instead,
it incorporates a probability of alleles dropping out or in.In making use of more genotyping
information when performing statistical calculations and evaluating potential DNA contributors,
probabilistic genotyping enhances the ability to distinguish true contributors and non-
contributors.A higher LR is typically obtained when evaluating a person of interest (POI) who is
a true contributor to the evidence profile, and a lower LR is typically obtained when the POl is

not a true contributor. While the absence of an allele or the presence of additional allele(s)

! Probabilistic genotyping is to be distinguished from an Expert System.An Expert System, if NDIS approved and
properly validated in accordance with the QAS, may only be used by a laboratory on database, known or casework
reference samples to replace the manual review in accordance with the QAS and NDIS Operational Procedures.
Expert Systems are not approved for use on forensic or forensic mixture DNA samples.
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relative to a reference sample may support an exclusion, probabilistic genotyping approaches

allow inclusion and exclusion hypotheses to be consideredby calculating a LR in which allele

drop-out and drop-in may be incorporated.

The use of a likelihood ratio as a reporting statistic for probabilistic genotypingdiffers
substantially from binary statistics such as the combined probability of exclusion. Prior to
validating a probabilistic genotyping system, the laboratory should ensure that it possesses the
appropriate foundational knowledge in the calculation and interpretation of likelihood ratios.
Laboratories should also be aware of the features and limitations of various probabilistic
genotyping programs and the impact that those items will have on the validation process.
Depending on the performance characteristics of the software, prerequisite studies may be
required to, for example, establish parameters forallele drop-out and drop-in, stutter expectations,
peak height variation, and the number of contributors to a mixture.Each laboratory seeking to
evaluate a probabilistic genotyping system must determine which validation studies are relevant
to the methodology, in the context of its application, to demonstrate the reliability of the system
and any potential limitations. The laboratory must determine the number of samples required to
satisfy each guideline and may determine that a study is not necessary. Some studies described

herein may also be suitable for evaluating material modifications to existing procedures.

Background

Please refer to the SWGDAM Validation Guidelines for DNA Analysis Methods andthe FBI
Quality Assurance Standards for Forensic DNA Testing Laboratories and for DNA Databasing
Laboratories (QAS) for general background information regarding validation and definition of

terms.

Probabilistic genotyping may generate a number of possible genotype combinations for a given
profile, where some genotypes may be assigned more weight than others. Allele drop-in and
drop-out probabilities may be used in the determination of the weights associated with each of
the possible genotypes. There are two main approaches to probabilistic genotyping: the semi-
continuous method and fully continuous method. The semi-continuous method focuses only on

the alleles present in the profile and addresses all possible genotype combinations of the
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observed alleles in conjunction with a probability of drop-out and drop-in. Analysis parameters
such as peak height variation, mixture ratios and stutter percentages are not typically utilized by
semi-continuous sofiware systems, although these elements may be considered during the initial
manual evaluation of the data. The fully continuous method generally utilizesmore of the
biological information in the profile, such as peak heights, stutter percentages and mixture ratios.
The weighting of genotype combinations as more or less probable may be inferred from the data
through methods such as Markov Chain Monte Carlo (MCMC) samplings from probability
distributions.

The analyst will need to employ some level of interpretation before using the software to
perform the calculations and should visually interpret allelic and non-allelic peaks and other
characteristics of the DNA typing results, as necessitated by the software. For example, the
analyst may be required to estimate and use a specific number of contributors in a statistical
calculation when interpreting a DNA mixture, or to assess whether typing results should be

interpreted or not based on quality.

Forensic DNA typing results interpreted by a DNA analyst using probabilistic genotyping
software may be eligible for CODIS entry and upload to NDIS in accordance with the NDIS
Operational Procedures if the probabilistic genotyping software has been properly validated
pursuant to the QAS and these Guidelines.

1. Validation of Probabilistic Genotyping Systems

1.1. The laboratory shall validate a probabilistic genotyping system prior to usage for
forensic applications. '

1.2. The laboratory shall document all validation studies in accordance with the FBI Quality
Assurance Standards for Forensic DNA Testing Laboratories.

1.3. The laboratory should document or have access to documentation that explains how the
software performs its operations and activities, to include the methods of analysis and
statistical formulae, the data to be entered in tile system, the operations performed by

each portion of the user interface, the workflow of the system, and the system reports or
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other outputs. This information enables the laboratory to identify aspects of the system

that should be evaluated through validation studies.

2. System control
2.1. The laboratory should verify that the software is installed on computers suited to run
the software, that the system has been properly installed, and that the configurations are
correct.
2.2. The laboratory should, where possible, ensure the following system control measures

are in effect:

2.2.1. Every software release should have a unique version number. This version
number should be referenced in any validation documentation or published
results.

2.2.2. Appropriate security protection to ensure only authorized users can access the
software and data.

2.2.3. Audit trails to track changes to system data and/or verification of system settings
in place each time a calculation is run.

2.2.4. User-level security to ensure that system users only perform authorized actions.

3. Developmental Validation

Developmental validation of a probabilistic genotyping system is the acquisition of test data

to verify the functionality of the system, the accuracy of statistical calculations and other

results, the appropriateness of analytical and statistical parameters, and the determination of

limitations. Developmental validation may be conducted by the manufacturer/developer of

the application or the testing laboratory. Developmental validation should also demonstrate

any known or potential limitations of the system.

3.1. The underlying scientific principle(s) of the probabilistic genotyping methods and
characteristics of the software should be published in a peer-reviewed scientific journal.
The underlying scientific principles of probabilistic genotyping include, but are not
limited to, modeling of stutter, allelic drop-in and drop-out, Bayesian prior assumptions
such as allele probabilities, and statistical formulae used in the calculation and

algorithms.
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3.2. Developmental validation should address, where applicable, the following:

3.2.1.

322

32.3.

Sensitivity — Studies should assess the ability of the system to reliably determine

the presence of a contributor’s(s’) DNA over a broad variety of evidentiary typing

results (to include mixtures and low-level DNA quantities). This should be

evaluated using various sample types (e.g., different numbers of contributors,

mixture proportions, and template quantities). |

3.2.1.1. Sensitivity studies should demonstrate the potential for Type I errors
(i.e., incorrect rejection of a true hypothesis), in which, for example, a
contributor fails to yield a LR greater than 1 and thus his/her presence in
the mixture is not supported.

3.2.1.2. Sensitivity studies should demonstrate the range of LR values that can
be expected for contributors.

Specificity — Studies should evaluate the ability of the system to provide reliable

results for non-contributors over a broad variety of evidentiary typing results (to

mmclude mixtures and low-level DNA quantities). This should be evaluated using

various sample types (e.g., different numbers of contributors, mixture proportions,

and template quantities).

3.2.2.1. Specificity studies should demonstrate the potential for Type II errors
(i.e., failure to reject a false hypothesis), in which, for example, a non-
contributor yields a LR greater than 1 and thus his/her presence in the
mixture is supported.
3.2.2.2.Specificity studies should demonstrate the range of LR values that can be

expected for non-contributors.

Precision — Studies should evaluate the variation in Likelihood Ratios calculated

from repeated software analyses of the same input data. This should be evaluated

using various sample types (e.g., different numbers of contributors, mixture

proportions, and template quantities).

3.2.3.1. Some probabilistic genotyping approaches may not produce the same
LR from repeat analyses. Where applicable, these studies should

therefore demonstrate the range of LR values that can be expected from

8 | Page
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multiple analyses of the same data and are the basis for establishing an
acceptable amount of variation in LRs,
3.2.3.2. Any parameter settings (e.g., iterations of the MCMC)that can reduce
variability should be evaluated. For example, for some complex
mixtures (e.g., partial profiles with more than three contributors),
increasing the number of MCMC iterations can reduce variation in the
likelihood ratio.
Case-type Samples — Studies should assess a range of data types exhibiting
features that are representative of those typically encountered by testing
laboratories. These features include those derived from mixtures and single-
source samples, such as stutter, masked/shared alleles, differential and preferential
amplification, degradation and inhibition.
3.2.4.1. These studies should demonstrate sample and/or data types that can be
reliably evaluated using the probabilistic genotyping system.
Control Samples — If the software is designed to assess controls, studies should
evaluate whether correct results are obtained with control samples.
Accuracy — Studies should assess the accuracy of the calculations performed by
the system, as well as allele designation functions, where applicable.
3.2.6.1. These studies should include the comparison of the results produced by
the probabilistic genotyping software to manual calculations, or results
produced with an alternate software program or application, to aid in
assessing accuracy of results generated by the probabilistic genotyping
system. Calculations of some profiles (e.g., complex mixtures),
however, may not be replicable outside of the probabilistic genotyping
system.
3.2.6.2. If the software uses raw data files from a genetic analyzer as input data,
the peak calling, sizing and allele designation functions should be
compared to the results of another software system to assess accuracy.
Allele designations should also be compared to known genotypes where

available.
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4. Internal Validation
Internal validation of a probabilistic genotyping software system is the accumulation of test
data within the laboratory to demonstrate that the established parameters, software settings,
formulae, algorithms and functions perform as expected. In accordance with the QAS,

internal validation data may be shared by all locations in a multi-laboratory system.

Depending on the features and capabilities of the probabilistic genotyping system, some
DNA typing results may or may not be determined to be suitable for such analysis. To
identify data features (e.g., minimum quality requirements, number of contributors) that
render a profile appropriate or inappropriate for probabilistic genotyping, the laboratory
should test data across a range of characteristics that are representative of those typically
encountered by the testing laboratory. Data should be selected to test the system’s
capabilities and to identify its limitations. In particular, complex mixtures and low-level
contributors should be evaluated thoroughly during internal validation, as the data from such
samples generally help to define the software’s limitations, as well as sample and/or data
types which may potentially not be suitable for computer analysis. In addition, some

exclusions may be evident without the aid of probabilistic software.

If conducted within the same laboratory, developmental validation studies may satisfy some

of the elements of the internal validation guidelines. '

4.1. The laboratory should test the system using representative data generated in-house with
the amplification kit, detection instrumentation and analysis software used for
casework. Additionally, some studies may be conducted by using artificially created or
altered input files to further assess the capabilities and limitations of the software.
Internal validation should address, where applicable to the software being evaluated:

4.1.1. Specimens with known contributors, as well as case-type specimens that may

include unknown contributors,

8 | P'age
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4.1.2. Hypothesis testing with contributors and non-contributors

4.1.2.1.

The laboratory should evaluate more than one set of hypotheses for
individual evidentiary profiles to aid in the development of policies
regarding the formulation of hypotheses. For example, if there are two
persons of interest, they may be evaluated as co-contributors and,
alternatively, as each contributing with an unknown individual. The
hypotheses used for evaluation of casework profiles can have a

significant impact on the results obtained.

4.1.3. Variable DNA typing conditions (e.g., any variations in the amplification and/or

electrophoresis parameters used by the laboratory to increase or decrease the

detection of alleles and/or artifacts)

4.1.4. Allelic peak height, to include off-scale peaks

4.1.5. Single-source specimens

4.1.6. Mixed specimens

4.1.6.1.

4.1.6.2.
4.1.6.3.

4.1.6.4.

4.1.6.5.

Various contributor ratios (e.g., 1:1 through 1:20, 2:2:1, 4:2:1, 3:1:1,
etc.)

Various total DNA template quantities

Various numbers of contributors. The number of contributors evaluated
should be based on the laboratory’sintended use of the software. A range
of contributor numbers should be evaluated in order to define the
limitations of the software.

If the number of contributors is input by the analyst, both correct and
incorrect values (i.e., over- and under-estimating) should be tested.

Sharing of alleles among contributors

4.1.7. Partial profiles, to include the following:

4.1.7.1.
4.1.7.2.
4.1.7.3.

Allele and locus drop-out
DNA degradation
Inhibition

4.1.8. Allele drop-in

4.1.9. Forward and reverse stutter

9| Page
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4.1.10. Intra-locus peak height variation

4.1.11. Inter-locus peak height variation

4.1.12. For probabilistic genotyping systems that require in-house parameters to be
established, the internal validation tests should be performed using those same
parameters. The data set used to establish the parameters should be different from
the data set used to validate the software using those parameters.

4.1.13. Sensitivity, specificity and precision, as described for Developmental Validation

4.1.14. Additional challenge testing (e.g., the inclusion of non-allelic peaks such as bleed-
through and spikes in the typing results)

4.2. Laboratories with existing interpretation procedures should compare the results of
probabilistic genotyping and of manual interpretation of the same data, notwithstanding
the fact that probabilistic genotyping is inherently different from and not directly
comparable to binary interpretation. The weights of evidence that are generated by these
two approaches are based on different assumptions, thresholds and formulae. However,
such a comparison should be conducted and evaluated for general consistency.

4.2.1. The laboratory should determine whether the results produced by the probabilistic
genotyping software are intuitive and consistent with expectations based on non-
probabilistic mixture analysis methods.

42.1.1. Generally, known specimens that are included based on non-
probabilistic analyses would be expected to also be included based on
probabilistic genotyping.

4.2.1.2. For single-source specimens with high quality results, genotypes derived
from non-probabilistic analyses of profiles above the stochastic
threshold should be in complete concordance with the results of
probabilistic methods.

4.2.1.3. Generally, as the analyst’s ability to deconvolute a complex mixture
decreases, so do the weightings of individual genotypes within a set

determined by the software.
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5. Modification to Software

Modification to probabilistic genotyping software shall be addressed in accordance with the

QAS.

5.1. Modification to the system such as a hardware or software upgrade that does not impact
interpretation or analysis of the typing results or the statistical analysis shall require a
performance check prior to implementation.

5.2. A significant change(s) to the software, defined as that which may impact interpretation
or the analytical process, shall require validation prior to implementation.

5.3. Data used during the initial validation may be re-evaluated as a performance check or
for subsequent validation assessment. The laboratory must determine the number and
type of samples required to establish acceptable performance in consideration of the

software modification.
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1. Introduction

The dominant method for forensic DNA analysis involves the
amplification of short tandem repeats using PCR. Amplified
products are separated via capillary electrophoresis (CE). Fluores-
cently labelled tags are used to colour code the markers or loci. A
laser excites the primer tags as the different lengths of DNA travel
through the capillaries of the electrophoresis instrument, which
emit a signal that is recorded. The signals are visualised as peaks in
a graph of fluorescence versus time, known as an electrophero-
gram (epg). The height of the peaks is approximately proportional
to the initial amount of DNA template and is measured in relative
fluorescent units (rfu). In this way height can be used as an
approximation of DNA quantity or template.

Manual techniques for DNA profile interpretation are heuristi-
cally based and may be difficult to apply consistently between
laboratories, individual scientists and even a single scientist,
Variable decisions often occur early in the manual interpretation
process and can even occur at allele assignment. Divergence in
these choices can have significant downstream consequences {2,3}].
Phenomena such as stutter (artifactual amplicons produced as a
consequence of the PCR process), allelic drop-in (the presence of
low amounts of extraneous DNA) and dropout (which is a

* Corresponding author.
E-mail addresses: jodashanne@gmail.com, jo.bright@esr.cri.nz (J.-A. Bright).

http://dx.doi.org/10.1016/j.fsigen.2016.05.007
1872-4973/© 2016 Elsevier Ireland Ltd. All rights reserved.

consequence of low template and/or degraded DNA and results
in partial DNA profiles) {4] are all considered at profile analysis and
interpretation. Interpretation of DNA profiles is also complicated
by mixed samples (the presence of DNA from more than one
individual).

The interpretation of an epg or evidentiary DNA profile should
initially be undertaken ‘blind’; in isolation of the person of
interest's (POI) reference DNA profile, and where possible avoiding
contextual effects [5,6]. Comparison with reference profiles of any
POI or other relevant evidentiary profiles is undertaken after
profile interpretation. Traditionally there are three primary
conclusions that can be drawn: cannot exclude (or inclusion), can
exclude, or inconclusive which is sometimes also called uninter-
pretable [ 7]. It is desirable when an association is reported (cannot
exclude or inclusion) to present the evidence with the associated
statistical weight [7]. When the evidence profile originates from a
single individual, the weight of evidence can be presented as a
match probability. This is an assignment of the probability that a
random person might match the crime scene stain given the
observation of that crime stain profile. A favoured alternative to the
match probability, which can be extended to use for mixed DNA
profiles, is the likelihood ratio (LR). The LR considers the probability
of obtaining the evidence profile(s) given two competing
propositions, usually aligned with the prosecution case and
defence case, The LR is used throughout Australasia and the UK
and is used in some laboratories within the US and Europe for
criminal forensic work to express the weight of evidence. The LR is

EXHIBIT B
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accepted to be the most relevant and powerful statistic to calculate
the weight of the evidence and is the only method recommended
by the International Society for Forensic Genetics (ISFG) for
ambiguous profiles [8]. Ambiguous profiles include all mixtures
and single source profiles where dropout and drop-in are a
consideration.

Known shortcomings of traditional methods of DNA profile
interpretation have led to the development of improved models
that factor in the probability of dropout {9-13). The drop model
(also known as the semi-continuous method) can optionally
incorporate a probability for dropout, Pr(D), and/or a probability
for drop-in, Pr(C). Semi-continuous methods do not use peak
heights when generating possible genotype sets and do not model
artifacts such as stutter. Continuous methods make assumptions
about the underlying behaviour of peak heights across all profiles
to evaluate the probability of a set of peak heights in a given profile.
These methods are designed to be used in expert systems and
reduce the requirement for the manual assignment of peaks as
allelic within evidence profiles, and hence reduce the opportunity
for inconsistency in interpretation to occur. The calculations are
sufficiently complex that software is needed. STRmix™ is one such
continuous method that employs a fully continuous approach for
DNA profile interpretation (http://strmix.esr.cri.nz/ [14]).

In 2015 the Scientific Working Group on DNA Analysis Methods
published the SWGDAM Guidelines for the Validation of Probabi-
listic Genotyping Systems [1]. The developmental validation of a
probabilistic genotyping system has been described by SWGDAM
as “the acquisition of test data to verify the functionality of the
system, the accuracy of statistical calculations and other results,
the appropriateness of analytical and statistical parameters, and
the determination of limitations” {1].

The developmental validation of STRmix™ was initially
undertaken in 2012 following the requirements outlined within
the FBI Quality Assurance Standards {15] by analysts at Forensic
Science South Australia (FSSA) and the Institute of Environmental
Science and Research Limited (ESR; http://www.esr.cri.nz/). FSSAis
the South Australian State Forensic Science Laboratory and is
accredited by the National Association of Testing Authorities,
Australia, ESR is the New Zealand Government Crown Research
Institute that undertakes forensic services for the NZ Police. ESR
forensic DNA laboratories are accredited by the Laboratory
Accreditation Board of the American Society of Crime Laboratory

Directors (ASCLD/LAB) under the International Testing Program
(1SO 17025).

Within this paper we describe the developmental validation
activities undertaken for STRmix™ following the SWGDAM
recommendations [1]. Each of the guidelines is discussed in turn
under their recommendation number.

1.1. Guideline 3.1 Publication of underlying scientific principles

All significant portions of the statistical algorithms and
underlying scientific principles behind STRmix™ have been
published in peer reviewed scientific literature. Within Table 1
we provide a summary of these models and algorithms and their
references aligned with the software version in which they were
introduced.

STRmix™ uses the quantitative information from an eleciro-
pherogram (epg) such as peak heights (0), to calculate the
probability of the profile given all possible genotype combinations
(S))- A value, or weight (w;), is assigned to the normalised
probability density p(0]S;). STRmix™ assigns a relative weight
to the probability of the epg given each possible genotype
combination at a locus. The weights across all combinations at
that locus are normalised so that they sum to one, Therefore, a
single unambiguous genotype combination at any locus would be
assigned a weight of one,

STRmix™ describes the fluorescence observed in one or more
epgs using a number of models that describe various properties of
DNA profile behaviour. These are described as mass parameters
and include a template for each contributor, a locus specific
amplification efficiency for each locus, a replication efficiency for
each PCR replicate, and a degradation for each contributor. This
biological model is described in Bright et al. [16]. Profile
degradation is modelled as exponential [1718]. Drop-in is
optionally modelled as a gamma distribution following Puch-Solis
[19]. In addition, STRmix™ employs a per allele stutter model, the
parameters of which are based on empirical data [16,20,21].

Posterior distributions of mass parameters are sampled from
using Markov chain Monte Carlo (MCMC). In general, MCMC is a
numerical method used, in this case, to approximate an integral
(typically multi-dimensional) of the observed data across all
parameters. MCMC methods sample from the posterior distribu-
tion of the desired integral. It does so by using Markov chains that

Table 1

A summary of the scientific principles, the STRmix™ version in which they were introduced and their publications.
Algorithms, scientific principles and methods Version introduced Reference
Allele and stutter peak height variability as separate constants within the MCMC V2.0 [14}
Peak height variability as random variables within the MCMC v23 [31]
Model for calibrating laboratory peak height variability V2.0 {31]
Application of a Gaussian random walk to the MCMC process V23 Described within this paper
Modelling of back stutter by regressing stutter ratio against allelic designation V2.0 {16,20,32,33]
Modelling of back stutter by regressing stutter ratio against LUS V2.3 {16,20,21,33}
Modelling of forward stutter v24 {34}
Modelling of allelic drop-in using a simple exponential or uniform distribution V2.0 [14]
Modelling of allelic drop-in using a Gamma distribution V2.3 (19}
Modetlling of degradation and dropout V2.0 (17}
Modelling of the uncertainties in the allele frequencies using the HPD V2.0 [30]
Modelling of the uncertainties in the MCMC V2.3 [29.30,35]
Database searching of mixed DNA profiles V2.0 [28]
Familial searching of mixed DNA profiles V2.3 [26]
Relatives as alternate contributors under the defence proposition V2.3 [26}
Modelling expected stutter peak heights in saturated data v23 [34}
Taking into account the ‘factor of two’ in LR calculations V23 36}
Maodel for incorporating prior beliefs in mixture proportions v23 137}
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have the posterior distribution as their equilibrium distribution.
These chains ‘walk’ around in a memoryless fashion using an
acceptance-rejection criterion to determine whether to take a step
or not. At each step that the chain accepts the integrand value, it is
counted towards the integral. At each step that the chain rejects the
integrand value at that proposed point, the current point is
counted towards the integral. The rejection-acceptance rule used
within STRmix™ is called the Metropolis-Hastings algorithm
[22,23]. The chain will then propose new steps in its search for a
state that provides a reasonably high contribution to the integral
until it finds a state which it will accept and move to. The statistical
algorithms within STRmix™ are described in Taylor et al. [14].

STRmix™ does not use the reference profiles during profile
deconvolution unless a reference from a known contributor is
available (for example the complainant’s DNA on their intimate
samples collected as part of an investigation into a sexual assault).
Where a reference profile is available from a person of interest
(POI) a likelihood ratio may be calculated. It is the ratio of the
probability of the observed crime stain (O) given each of two
competing hypotheses, H, and Hy, and given all the available
information, . Mathematically, we express this as:

__Pe(O[Hy, 1)
~ Pr(O[Hg, )

The likelihood ratio is calculated in STRmix™ incorporating
values for Fsy (theta) using the subpopulation model of Balding and
Nichols in 1994 [24], referred to as recommendation 4.2 in the
1996 National Research Council report (NRCI) [25]. As a
continuous extension to the classic incorportation of a theta value
(which is typically a fixed value) STRmix™ can consider a
distribution for theta. Propositions within STRmix™ are flexible,
The defence proposition aligns with exclusion of the person of
interest and typically considers an unknown, unrelated individual
within a selected population. Where appropriate, alternate
propositions are calculated under the defence propositions such
as a sibling, parent, child or cousin of the person of interest [26].
Additionally STRmix™ can provide an LR based on the unifying
theory. This is where rather than specifying either an unrelated
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individual or a nominated relative (sibling, parent etc.) under the
defence propositon, all members of the population, including
possible relatives of the POI can be considered by taking into
account their prior probabilities based on population properties.

If one or more contributors is known to be present (ie.
conceded by both parties) then this information can be provided to
STRmix™ at the deconvolution stage in order to assist in the
deconvolution of the remaining questioned contributors. This
assumption of a known contributor is then carried forward to the
LR calculation. If a reference profile is not available from a person of
interest, the profile may be compared directly with a database of
known individuals {28] to identify investigative leads.

STRmix™ uses the highest posterior density (HPD) method for
calculating an LR distribution, from which a quantile can then be
chosen in order to report a bound of the probability density
distribution {29,30]. Within STRmix™ versions 2.3 onwards, the
variability due to MCMC, the sampling variation inherent in
generating allele frequency databases and the variability in Fst
(theta) can be estimated.

1.2, Guideline 3.2 Sensitivity and specificity studies

With respect to interpretation methods, sensitivity is defined as
the ability of the software to reliably resolve the DNA profile of
known contributors within a mixed DNA profile for a range of
starting DNA template. The log(LR) for known contributors (H,
true) should be high and should trend to 0 as less information is
present within the profile. Information includes the amount of
DNA from the contributor of interest, conditioning profiles (for
example the victim’s profile on intimate samples), PCR replicates
and decreasing numbers of contributors. Specificity is defined as
ability of the software to reliably exclude known non contributors
(Hy true) within a mixed DNA profile for a range of starting DNA
template, The LR should trend upwards to neutral as less
information is present within the profile, This is shown diagram-
matically in Fig. 1.

Specificity and sensitivity within STRmix™ were tested by
calculating the LR for a number of GlobalFiler™ mixtures for both

Increasing
information

e.g. PCR
replicates, fewer
and assumed
contributors

Increasing
information

e.g. PCR
replicates, fewer
and assumed
contributors

Increasing information (e.g. more DNA)

Fig. 1. A diagram showing the desired performance of a method of mixture interpretation.
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Table 2
A summary of the experimental set up.

Sample Mixture proportions for contributor  Total DNA added to PCR (pg)

One Two Three Four

1-3 0.50 0.50 - - 400,200,50

4-6 0.33 0.67 - -

7-9 0.20 0.80 - -

10-11 017 0.83 - -

13-15  0.09 0.91 - -

16-18 033 0.33 033 -~

19-21 0.50 033 017 -

22-26 025 0.25 0.25 0.25 400,200,50,20,10

27-31 040 0.30 020 0.10

known contributors and known non-contributors {38]. Two, three
and four contributor mixtures were constructed in varying
proportions and amplified with varying amounts of template
DNA as described in Table 2.

Each sample was amplified in triplicate giving a total of 93
samples. Profiles were interpreted using STRmix™ v1,08 and LRs
calculated for the known contributors and 186 non contributors.
The propositions considered were:

Hp: The DNA originated from the person of interest and N-1
unknown contributors

Hd: The DNA originated from N unknown individuals

Where N was the number of contributors within the profile,

The plots of log;o(LR) versus DNA in the PCR (pg) produced for
these comparisons are reproduced in Figs. 2-6 . The LRs produced
from comparisons to known contributors (sensitivity tests) are
signified by a blue point and those produced from comparisons to
known non-contributors (specificity tests) are signified by a red
point, A minimum value for logio(LR) of —30 was used, and any LRs
obtained that fell below this were given the value of —30. The lines
on figures are given only as a visual indication of trends in the
scattered results. The polygons seen give a visual indication of the
spread of the LRs.

The plots in Figs. 2-6’ clearly demonstrate the sensitivity of
STRmix™ for these mixtures by inspection of the spread of blue
points, They show the range of expected LR values for contributors
given the amount of input DNA (guideline 3.2.1.2). Type [ errors
(incorrect rejection of a true hypothesis) are clearly identified as
blue points below the horizontal line of log;o(LR)=0. As expected,
this is dependent on the amount of DNA per contributor and the
number of contributors to a profile (guideline 3.2.1.1).

The plots also demonstrate the specificity of STRmix™ by
inspection of the red points. The per contributor amount for Hy true
contributors was taken as the average of the known contributors
(guideline 3.2.2.2). Type HI errors (failure to reject a false
hypothesis) are clearly identified as reds points above the
horizontal line of log1o(LR) = 0. As for sensitivity tests, this depends
on the amount of DNA within the profile and number of
contributors (guideline 3.2.2,1). A series of much larger simu-
lations (over 100 million LRs in total) exploring the specificity of
STRmix™ and comparing it to theoretical expectations was carried
out in [39]. This work found close alignment with expected and
observed specificity from STRmix™ results.

The LR distributions for Hp, true and Hy true are very well
separated at high template for two contributor mixtures, As the
number of contributors increased and the template lowered the

1 Reprinted from Forensic Science International: Genetics, Volume 11, Duncan
Taylor, Using continuous DNA interpretation methods to revisit likelihood ratio
behaviour, Forensic Science International; Genetics, Pages 144-53, Copyright 2014,
with permission from Elsevier.

two distributions converged on log;o(LR)=0. At high template
STRmix™ correctly and reliably gave a high LR for true contributors
and a low LR for false contributors. At low template or high
contributor number STRmix™ correctly and reliably reported that
the analysis of the sample tends towards uninformative or
inconclusive.

There are some arguments [1-3] that a single point estimate of
the LR as given in Figs. 2-6 is actually the best and most
theoretically sound estimate to give if the goal was an even handed
and probabilistic treatment of uncertainty. In DNA profile
interpretation we typically deliberately give an underestimate.
In our own casework we predicate this with the words “at least” by
which we mean that the number reported is either below or very
near the bottom of the plausible range. Our experience suggests
that this is done because of the desire by the courts and forensic
scientists to avoid overstating the evidence, Over time the
avoidance of overstatement has changed into what is probably a
very considerable and deliberate understatement. This has been
facilitated, we believe, because DNA can afford this understate-
ment given the magnitude of our likelihood ratios.

Sensitivity and specificity studies however have a scientific
component to them and it may be desirable to use the best
estimate available for these. If these studies are used to formulate
decisions such as assigning terms to a verbal scale then it should be
noted that they refer to the point estimate and not the lower
bound. This has an additional and possibly undesirable conse-
quence that if the verbal scale is calibrated from the sensitivity and
specificity plots and then this scale is applied to the lower bound, .
the scale itself now possesses an element of conservativeness.

There is no specific SWGDAM guideline regarding error rate but
it is one of the Daubert standards regarding the admissibility of
expert evidence in the US {40], with acknowledgement that these
guiding factors are neither exclusionary nor mandatory [41]. With
respect to forensic DNA evidence, the concept of error rates and
false inclusions® are similar and often confused. False inclusions
would come under the specificity guideline of SWGDAM (guideline
3.2).

Our preferred procedure when using STRmix™ is that the
analyst assesses whether a person of interest is excluded prior to
either their assessment of the results of software calculations or
interpretation of the profile using the software at all. Following this
procedure, STRmix™ is being continually checked against human
expectations and hence is being continually validated.

The number of LRs>1 is largely determined by the sample.
Factors include the number of contributors and template.
Considerable research has been undertaken that allows informed
statements to be made about the false inclusion rate for any given
sample [14,28,38,42].

The LR is an assessment of the weight of evidence, It is
developed by considering two propositions: one aligned with the
prosecution and an alternative. LRs>1 support the prosecution
proposition and those lower than one support the alternative.

To highlight the matter, consider that we make up a DNA
mixture and hence we know the donors. Consider that this mixture
is made from Smith and Brown. If we test the proposition that it
contains Smith we expect a high LR. Suppose the LR is a billion. Is
this correct? It is larger than one and as such that part is correct,
but is a billion too large or too small or just right? The problem is

2 Note that the terms ‘false inclusion’ and ‘false exclusion’, whilst commonly
used, imply an error has occurred, when in reality the probability has been assigned
as expected in accordance with theory. A better term would be ‘support for a false
proposition’; however we retain the terms ‘false inclusionfexclusion’ for general
understanding.
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Fig. 2. LRs produced for two person mixtures.

that we do not have the ‘true answer' and this cannot be obtained
by any method.

False exclusions or false inclusions need to be interpreted in an
LR framework. A false exclusion most nearly corresponds with an
LR markedly less than one when H,, is true. A false inclusion most
nearly corresponds with an LR markedly greater than one when Hy

is true, LRs near one are best described as uninformative and this
may be the correct indication of the value of the profile even for
comparisons with true or false donors if the information presentin
the profile is limited.

When we consider a possible error rate for STRmix™ this must
be balanced against the error rate for the entire DNA analysis
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Fig. 3. LRs produced for three person mixtures,
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Fig. 4. LRs produced for four person mixtures.

process which can cause false inclusions and exclusions indepen-
dent of the program. A false inclusion occurs when:

« A non-donor has the correct alleles by chance, in total or in large

part, to explain the mixture,

It is very improbable that operator error (such as the inclusion
of artifacts) or false information about a known contributor would
cause a false inclusion.

The rate of false inclusion is increased in situations where the
true DNA donor is a close relative of the POIL> Higher order
mixtures, say four contributors, increase the chance of false
inclusions. Depending on the type of profile and proportion of DNA
corresponding to the POI, replication and the correct use of known
contributors can reduce the chance of false inclusions (refer Figs. 5
and 6). In addition, more loci used in the analysis will reduce the
chance of false inclusion.

A false exclusion occurs when:

o The PCR reaction runs sufficiently poorly that the peak or stutter
heights give misleading information, or

« A non-contributor is assumed to be present, or

« There is an operator error, notably inclusion of an artifact in the
peak information used by STRmix™ at interpretation. An
artifactual peak that has been retained within the input file
will become part of the information used by STRmix™ to build
genotype combinations. This will result in genotype combina-
tions containing the artifact which will not align with the “true”
genotypes of contributors to the profile. If the POI aligns with one
of these altered (false) genotypes, this might result in a false
exclusion.

3 Exploratory experimental work (ongoing) undertaken in conjunction with
USACIL and the FBI suggests that STRmix™ can handle most of these situations.

There are a number of factors within STRmix™ under the
control of the operator or the laboratory that affect errors. Most
significantly are the two variance terms. If these are set too low
they increase false exclusions. Set too high they increase false
inclusions. These variances are set during a laboratory’s internal
validation by modelling the observed variation in allelic and stutter
peak heights within a set of single source profiles of varying quality
[31]. There are a number of diagnostics output by STRmix™ that
allow a human check of the results including the genotypic weights
(p(0[Sp), the posterior mean of the variance terms and summary
statistics of the MCMC (discussed later).

False inclusions and false exclusions may occur as a result of a
combination of specific software, multiplex and operator factors.
These are measurable, The most significant factors affecting them
are the number of contributors, the number of known contributors,
template levels, and the multiplex used. These factors are wrapped
up in the LR in a way that the chance of producing an LR equal to or
larger than the one in any particular case (LRcase) is less than 1/
LRcase. This relationship has been tested in trials of over 120 million
cases of simulated false contributors and has always held {39].

The fraction of false donors exceeding LR, has been termed
the p-value [43-45] and it has been convincingly argued that they
do not replace the LR [46], Nor is the p-value a direct measure of the
false inclusion rate since an LR for a false donor less than LR¢,se but
still much larger than one would be considered a false inclusion.

We have no realistic way of measuring the false exclusion rate
except to say that we have no undiagnosed instances of false
exclusion.

The pink data within Figs. 2~6 are the logyo(LR) values for non-
donors. Any red data points above the line support Hp, and may
therefore be considered false inclusions. These data, which are
towards the low template end, are slightly above the log;o(IR)=0
line, and are usually likelihood ratios between 1 and 1000
(log1o{LR) 0-3). We term these low grade false inclusions since
the LRs are low and near neutrality or only slightly to the
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Fig. 5. LRs produced for four person mixtures using three replicate amplifications.

inclusionary side. They occur when the false donor has the correct
alleles for inclusion and hence they are a property of DNA rather
than a consequence of the software not performing. There are no
modelling improvements that could ever be made which will
eliminate all LRs that falsely favour inclusion, This is because the
phenomenon causing these results is not a modelling

phenomenon, but is due to the available biological data. With
any interprefation method there is a modelling component
(including probability of dropout and drop-in) that will affect
the magnitude of the LR, and this could mean the difference
between a false inclusion and correct exclusion for a particular
non-donor.
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Fig. 6. LRs produced for four person mixtures using three replicate amplifications and assuming three out of the four known contributors in each analysis,
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1.2.1. Uncertainty in the number of contributors

The determination of the effect of incorrectly assigning the
number of contributors to a profile on the interpretation is not
explicitly a requirement of developmental validation within the
SWGDAM guidelines however this is something the STRmix™
development team has explored. The true number of contributors
to a profile is always unknown. Analysts are likely to add
contributors in the presence of an artifact, high stutter, or forward
stutter peak. The assumption of one fewer contributor than that
actually present may be made when contributors are at very low
levels, are affected by peak masking and are dropping out (or
visible below the analytical threshold), and in profiles where DNA
is from individuals with similar profiles at the same concen-
trations.

The effect of the uncertainty in the number of contributors
within STRmix™ has previously been reported for a number of
profiles with N and N+1 assumed contributors, where N is the
known number of contributors {28,42]. The inclusion of an
additional contributor beyond that present in the profile had
the effect of lowering the LR for trace contributors within the
profile, STRmix™ adds the additional (unseen) profile at trace
levels which interacts with any known trace contribution, diffusing
the genotype weights and lowering the LR. There was no significant
effect on the LR of the major or minor contributor within the
profiles.

Separately, the effect of underestimating the number of
contributors to a profile (N versus N-1) has been investigated.
Assigning the number of contributors as N-1 (where N is the known
number of contributors) may result in an exclusionary LR for a
known contributor. This occurs as STRmix™ is more likely to
favour an incorrect genotype as it had to account for profiling
information that does not explain the data accurately.

1.3. Guideline 3.2.3. Precision

STRmix™ assigns a relative weight to the probability of the epg
given each possible genotype combination at a locus. These
weights are determined by Markov chain Monte Carlo (MCMC)
methods. The results of no two analyses will be completely the
same using a stochastic system like MCMC. This is a phenomenon
that is relatively new to forensic DNA interpretation, which up
until this point has always had the luxury of, at least theoretically,
completely reproducible interpretation results. The reproducibility
of LRs calculated using STRmix™ has previously been explored by
Bright et al. [35,48].

The main cause of high variability within STRmix™ is non-
convergence with the MCMC. Strictly, Markov chains do not
converge. They explore the sampling space forever until they are
told to stop. What we mean when we say Markov chains have
reached convergence is that all chains are sampling from, and
remain in, the ‘same’ high probability space.

Non-convergence is caused by the MCMC chains not being run
for a sufficient number of accepts. The MCMC process starts with a
number of iterations termed the ‘burn-in’. Accepted genotypes
from the burn-in process are not counted as they are likely to start
at a low probability location. At the completion of burn-in the
MCMC progresses to post burn-in. STRmix™ is set to run for a user
defined number of burn-in and post burn-in accepts. STRmix™
uses accepts as a method of controlling how long the MCMC runs
rather than total iterations. The reason for this is that by ensuring a
defined number of accepts is obtained there is some degree of
automatic scaling, whereby more complicated problems (with
lower acceptance rates) will automatically run for more iterations,
without the need for user intervention.

Non-convergence can be diagnosed using the Gelman-Rubin
statistic [49,50]. A high Gelman-Rubin statistic in conjunction with

other diagnostics may be an indication of non-convergence. The
solution to non-convergence is to run the problem for longer, i.e.
for more MCMC accepts. We typically multiply the number of
burn-in and post burn-in accepts by 10.

Putting aside non-convergence, there will always exist a level of
MCMC run to run variability. This is simply due to the fact that the
analysis is based on random number generation to function, which
as the name suggests, is random, Ideally this variability in some
output value is small in comparison to the size of the value itself
and hence its impact on interpretation is minimal, and in some
instances can be taken into account. Variation in LRs produced
from STRmix™ analyses will depend on both the sample and the
run parameters. Sample specific factors that affect precision
include:

1. Number of contributors to a DNA profile

2. Quality/intensity of the DNA profile

3. Number of replicates available for analysis

4, The probability of the observed data given the genotype of the
POl as a contributor (commonly referred to as the ‘fit’ of the POI)

5, The amount of STR information available in the profile,

STRmix™ run specific parameters that affect precision include

1. Number of iterations the MCMC has run

2. The number of Markov chains used

3. The step size of the Markov chain (termed the random walk
standard deviation, RWSD).

The RWSD is a metaparameter that describes the standard
deviation of the normal distributions from which the step size for
each continuous parameter is drawn. We describe this metapara-
meter in more detail below. The effect of these run specific
parameters on the variability of the LR is discussed in detail below.

1.3.1. Number of MCMC chains and accepts

Increasing the number of either accepts or moves and adjusting
the step size (the RWSD) can reduce but not totally remove the
variation, There is, however, an associated runtime cost. Hence a
trade-off between reproducibility and runtime must be struck,

The variation in the calculated LR due to sample factors and run
specific parameters in STRmix™ has been explored for a number of
different profiles with varying numbers of contributors and
quality. Eight profiles were generated ‘in silico’. These included
one, two, three and four contributor profiles, in various template
(high and low level) and proportions, in the GlobalFiler™ kit

Table 3
Summary of run parameters (chains, burn-in and post burn-in accepts) undertaken
to interpret the sixteen profiles in order to explore the precision of STRmix™,

Set Chains Burn-in accepts Post burn-in accepts
1 4 50,000 150,000

2 4 500,000 200,000

3 4 50,000 2,000,000
4 4 500,000 2,000,000
5 8 50,000 400,000

6 8 500,000 400,000

7 8 50,000 4,000,000
8 8 500,000 4,000,000
9 16 50,000 800,000
10 16 500,000 800,000

1 16 50,000 8,000,000
12 16 500,000 8,000,000
13 20 50,000 1,000,000
14 20 500,000 1,000,000
15 20 50,000 10,000,000
16 20 500,000 10,000,000
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configuration. Each profile was interpreted in STRmix™ v2,3.07
ten times giving 80 runs in a batch. For each batch, a different
combination of number of chains, burn-in and post burn-in accepts
were trialled. In total, sixteen different chain/iteration combina-
tions were tested generating data for over 1200 profile deconvo-
lutions. The data was analysed to determine which chain/iteration
combination resulted in the best reproducibility whilst also
considering the impact on run time. A summary of the number
of chain and accepts combinations considered is provided in
Table 3,

A summary of the point estimate and 1st percentile (taking into
account sampling variation in allele proportions and weights) of
the distribution of logio(LR) value (called the logio(LR) and
log1o( HPD) respectively) for each of the ten replicates is provided

in Appendix A (ordered by run parameter set) and Appendix B
(ordered by prefile). In addition summary statistics including the
Gelman-Rubin diagnostic and posterior means of the allele and
stutter variance constants are provided.

Inspection of the results in Appendix A and B show that as the
profile is interpreted using more Markov chains and higher
numbers of accepts, STRmix™ analyses are more likely to converge
to the same parameter values, resulting in more reproducible LRs.
The number of chains, total number of burn-in and post burn-in
accepts and number of contributors all had an effect on run times.
Consequently some interpretations were not completed after
reviewing the wider results.

The LR for the two GlobalFiler™ single source profiles under all
run configuration was identical. Due to the peak heights of these
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Fig. 7. Logio(LR) (O) and log;o(HPD) (&) of ten replicate interpretations of different GlobalFiler™ profiles, interpreted using eight chains with 50,000 burn-in accepts and

400,000 post burn-in MCMC accepts.
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profiles dropout was not considered, resulting in a single genotype
combination at each locus with weights equalling one. This was the
expected result. The two person mixtures all gave LRs within one
order of magnitude across all run configurations. There was an
increase in observed LR variability within the three and four person
mixtures with lower numbers of chains and lower total iterations.

A summary of the distribution of the log;o{LR) and logo(HPD)
for ten replicates of the eight GlobalFiler™ profiles using eight
chains with 50,000 burn-in accepts and 400,000 post burn-in
MCMC accepts is provided in Fig. 7.

1.3.2. Random walk standard deviation

At each iteration, the MCMC will have a particular set of values
stored that describe the profile. When proposing new values for
the next MCMC iteration the values will be chosen close to the
current set of values. The distance of the step-size is based on a
normal distribution with a mean set to the current value and a
variance that dictates step-size. This is known as a Gaussian
random walk. In a Gaussian walk the size of the step for any given

variable is sampled randomly from ~ N(0,sd?). The size of sd? is
dependent on the parameter and is tuned by the RWSD, Setting the
RWSD too high will result in the values for the mass parameters
that are used to describe the profile differing significantly between
steps. This will allow the Markov chain to explore much more
posterior topography but will result in many rejected iterations,
where parameters have been chosen that do not describe the
profile adequately, resulting in longer run times. It may also have
the effect of requiring additional iterations to ensure fine scale
posterior topography is adequately explored. A RWSD that is set
too small will mean the larger scale topography may not be
explored sufficiently resulting in a decrease in precision and,
potentially, accuracy. While this suggests that values for RWSD
which are either too high or too low can have determimental
outcomes, in practise the MCMC can accommodate a broad range
of values with little negative effect, but some potentially positive. A
demonstration of the effect of varying the RWSD on the logo(LR)
for the four contributor high and low template GloabFiler™ profile
is given in Fig. 8. The profile was interpreted ten times each using
three different values for the RWSD: 0.01, 0.005 and 0.0001.
Interpretations were undertaken using eight chains with 50,000
burn-in accepts and 400,000 post burn-in MCMC accepts within
STRmix™ version 2.4.02.

Inspection of Fig. 8 shows that reproducible LRs (within one
order of magnitude) were generated using both 0.01 and 0.005. The
run times using a RWSD of 0.005 were significantly less however
than when using 0.01. The LRs assigned using a RWSD of 0.0001
were highly variable indicating STRmix™ had not likely explored
the probability space sufficiently. On balance the RWSD value of
0.005 afforded a reproducible LR with a low run time.

We have demonstrated that at least 50,000 burn-in and
400,000 post burn-in accepts across eight chains and a RWSD of
0.005 are suitable MCMC run parameters leading to reproducible
LRs (within one order of magnitude) for many different types of
profile, These settings are likely to be excessive for many one, two
and some three person profiles. They will be sufficient for the
remaining three and most four person profiles. Decreasing the
number of accepts may mean that STRmix™ has not converged
and, even with convergence, more variability is expected.
Increasing the number of accepts has been shown to help with
reproducibility for more complex profiles and will certainly mean
higher run times. A summary of the approximate run times for
different profiles interpreted using STRmix™ v2.4.02 on a laptop
(Windows 7 64 bit, Intel Core i7-5600U CPU, 2.6 GHz, 16 GB RAM)
are given in Table 4,

In calculating the LR, the numerator is the weighted sum of the
probability of fewer genotype sets than the denominator. In many
cases the numerator may have only one term. Since the
denominator is the weighted sum across the probability of many
genotype sets it has a stability to variation in the LR, However the
numerator of the LR is more sensitive and this effect is at its
greatest when the weight for the numerator genotype set(s) is low.
This is most obvious for profiles where the inclusion of a POI
requires an improbable peak height variability (observed as large
heterozygote balances or dropout) i.e. where the fit of the POI to
the profile is poor, or when the inclusion of the POl requires one or
more drop-in events to have occurred (which will also increase LR
variability due to allele proportion uncertainty).

We have demonstrated that higher order mixtures and profiles
with low template and/or poor quality lead to a decrease in
precision (replication in LR across replicates runs). As a general
guide, we have observed that if the overall LR is greater than 1 and
one or more of the locus LR values are less than or equal to 1, the
POl is likely to have a poor fitting genotype to the observed data at
these loci. In these cases the MCMC can be run at 10 or more times
the default number of accepts and/or by increasing the RWSD in
order to ensure improved precision.

In general, using the default settings as described above, when
comparing a POl who is a good fit to the observed profile the
difference between the smallest and largest LR is small in relation
to the size of the LR. For profiles where an unlikely stochastic effect
has occurred, or the POl is a poor fit to the profile then the
difference between the largest and smallest LR may be higher but
again small in relation to the LR. In the 1200 dataset described
above (Appendix B) the largest differences between the smallest
and largest log(LR) using the recommended run settings was 1.3
fold. For profiles where an unlikely stochastic effect occurred, or
the POl was a poor fit to the profile then the difference in log(LR)
values can be above one. These situations can be minimised or
eliminated via policies that suggest increasing iterations based on
the profile data.

1.3.3. Reproducibility

Reproducibility is often stated as one of the main principles of
the scientific method. A value is reproducible if there is a high
degree of agreement between LRs run on the same input in
different locations by different people. Reproducibility is one
component of the precision of a measurement or test method. The
other component is repeatability which is the degree of agreement
of LRs on the same input by the same observer in the same
laboratory.

Reproducibility is not intended to mean “exactly the same”,
Reproducibility means that the results are very similar within the
limits of measurement or they lead to the same conclusion. In any
real world application we must accept measurements to a degree
of resolution and models of a limited level of complexity, or we
must accept that the property we are measuring has a degree of
variability. A level of uncertainty can exist in a measurement (or
model) and yet the measurement can still be informative. In fact
science and statistics rely on this fact.

If the same or a different operator interpreted the same input
file using STRmix™ with the same random number seed® they
would obtain exactly the same answer. So why then do we not set

4 No computer code can actually produce a truly random number. When you tell a
computer to generate a sequence of random numbers it draws upon an algorithm
that generates what looks like {to humans) as being random, but will eventually
start repeating itself, If a computer was told to generate a set of 1000 random
numbers twice then it would generate two lists of 1000 seeming random looking
numbers, but the lists would be identical. The way to get around this is by providing
the algorithm with a random starting value (or ‘seed’).
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Fig. 8. Logio(LR) of ten replicate interpretations of the high template (blue bars) and low template (grey bars) four person GlobalFiler™ profiles, interpreted using eight chains
with 50,000 burn-in accepts and 400,000 post burn-in accepts and varying RWSD, Runtime (in min) is indicated by the black lines, which correspond to the right hand vertical
axis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4

Approximate time taken to complete interpretation of various GlobalFiler™ profile
types within STRmix™ (hours:minutes:seconds), 8 chains with 50,000 burn-in and
400,000 post burn-in MCMC accepts, and RWSD of 0.005.

Number of contributors High template profile Low template profile
Single contributor 0:00:12 0:00:12
Two contributors 0:00:34 0:01:13
Three contributors 0:16:52 0:16:42
Four contributors 1:53:37 1:42:50

the seed and obtain exactly the same answer each time? Strangely
this is dishonest repeatability. It would give a false impression of
perfect precision, We prefer to give a true measure of our precision.

For very simple situations we can manually calculate the value
of the LR from the mixture deconvolution part of the software. For
the remaining situations, which comprise the vast majority of
situations, we can predict limits and patterns but not exact values
(for example by referring to plots such as those in Figs. 2-6). If we

retain the concept of a correct, but unknowable, answer, and we -

plot the output from STRmix™ against these limits the patterns
can be assessed to draw conclusion about the function of the
STRmix™ maodels.

1.4. Guideline 3.2.4. Case-type samples

The mixtures described in section 3.2.3 above (Precision)
include a range of profile types typically encountered in casework.
These profiles include single source and mixed DNA profiles
containing up to four contributors generated for both Identifiler™
and GlobalFiler™ profiles. In addition, the developmental valida-
tion of STRmix™ involved the testing of a number of profiles
generated using other kits and different capillary electrophoresis
instruments (3130 and 3500) including ProfilerPlus®, PowerPlex®
21, Fusion, MiniFiler™, SGMPlus™ (profiles amplified at 34 cycles)
and NGM Select™ (data not shown). Back stutter is explicitly
modelled in all versions of STRmix™ and version 2.4 introduces to
modelling of forward stutter. The profiles included contributors
with shared alleles. STRmix™ models the variability of single
peaks. The variance of this model is determined by directly
modelling laboratory data. This is undertaken within STRmix™
using the Model Maker function,

1.4.1. Mock samples versus casework

Three experiments have previously been reported comparing
the use of mock case samples and casework samples, or single
source and mixed DNA profiles, to form interpretation policies
[31,51,52]. None of the studies found any obvious difference
between these sets, This may be the expectation from theory. Peak
height is approximately linearly proportional to the number of
template molecules sampled. The standard deviation in that peak
height is proportional to the square root of the number of template
molecules {53,54].

if we posit that casework has degradation and inhibition effects
not modelled with mock samples then we need to see how that
would affect the peak heights and their variability. Degradation
effectively reduces template from the starting extract but
whatever number of quality template molecules survive this
number is still the primary explanatory variable for peak height
and relative variation. Therefore if 50% of the template was
degraded we would expect this to behave similarly to a mock
sample with half the template.

The effect of inhibition is more difficuit to predict. Inhibitors
may bind to the single stranded DNA or to the polymerases or any
other co-factor. If they are simply removing template from the
reaction then they would act the same as degradation. In any case
what we tend to observe is that a whole locus or sets of loci amplify
poorly and all peaks are lowered [55]. We could easily see how the
relative variability might remain the same, STRmix™ explicitly
models locus specific amplification efficiencies (LSAE). The LSAE
model reflects the observation that even after template DNA
amount, degradation and variation in peak height within loci are
modelled, the peak heights between loci are still more variable
than predicted, resulting in poorer amplification of some loci
possibly due to inhibition. The variance of the LSAE model is
determined by directly modelling laboratory data (see [31]). LSAE
values for each STRmix™ interpretation appear within the results.
We can demonstrate the relationship of LSAE values to average
peak heights (APH) via a simple plot. The LSAE values should mimic
the average peak heights of the locus if degradation is minimal,
otherwise you will see a trend across sets of loci within dye colours
according to molecular weight, This is demonstrated for one single
source Identifiler™ profile in Fig. 9. The differences in APH and
LSAE in this figure are due to overall profile degradation which is
modelled separately.
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Fig. 9. Plot of APH (bars) and LSAE value (line) for each locus ordered by molecular weight for a single source Identifiler™ profile.

We have described above the theoretical expectations from the
interpretation of inhibited and degraded profiles using STRmix™,
Separately, we have interpreted a number of DNA profiles derived
from various mock crime samples such as cigarette butts,
bloodstains on wood, touched items and worn clothing, Inspection
of the diagnostics from these STRmix™ interpretations including
degradation and LSAE values align with our expectations {(data not
shown).

1.5. Guideline 3.2.6. Accuracy

There is a subset of profiles where the expected answer may be
replicated relatively easily by hand. By comparing the software
output with the expected answer, the performance and limitations
of the software may be examined. An understanding of the models
behind the methods is essential for this process. Examples of
where we can predict the answer include single source profiles,
mixtures where the profile of a major contributor is unambiguous
(major/minor) and mixtures of two contributors in equal
proportions (balanced). STRmix™ has been shown to give the
expected result in each case [48].

Functionality has been installed within STRmix™ to facilitate
validation and performance checks. This includes the extended
output and set seed functions. The extended output contains all of
the parameters and calculated probabilities for each iteration
within a run. The ‘set seed’ function turns off the random processes
within STRmix™ and allows direct comparison of runs within and
between different versions of the software. STRmix™ is built in
two separate parts that communicate via a text file. The first part
runs the MCMC, the second the LR calculation. Hence, in some
version releases it is possible to test one part using an old output
from the other part variously using the set seed or checks of the
extended output to allow the direct comparison of outputs and
lessen the validation load.

The following functionality and outputs from STRmix™ were
verified by hand as part of the developmental validation tasks for
each commercial version:

1. Expected allele and stutter heights given mass parameters
2.

Expected peak heights of drop or ‘Q alleles given mass
parameters

3. Probabilities given expected and observed peak heights and
varying analytical thresholds

. Locus specific amplification efficiency calculations

. Summation of probabilities for each allele in a locus and across
a profile

. Summation of probabilities across multiple replicate profiles

. Informed priors on mixture proportion

. LR values where there are no assumed contributors

. LR values for propositions with assumed contributors

. LR values with varying theta values

. Relatives calculations (where a relative is considered as an
alternate contributor under Hy)

12, Sampling from the Beta distributions for theta

13. LR stratified point estimates

14. LR highest posterior density (HPD) interval values

15. Gaussian walk

16. Gelman-Rubin statistic, ESS, weight resampling

17. Drop-in function

18. Database search functionalities

19. Model maker.

Ut o

- oW g,

—

The comparison of expected heights, probability and LR values
was conducted in MS Excel or by comparison to results generated
in the rypp package written by Professor James Curran in R [56].

The likelihood ratios calculated using STRmix™ have been
compared to two probabilistic genotyping methods employing
semi-continuous models and two binary methods of profile
interpretation [48,57]. Where a profile was able to be fully
resolved or for single source profiles where dropout was not a
consideration (weight, w;, equals one ateach locus) the LR between
STRmix™ and the semi-continuous methods were comparable
where they were using the same population genetics model, For
mixed DNA profiles, generally STRmix™ resulted in higher LRs for
ground truth known trials as continuous models use more of the
profiling information (for example peak height information)
compared with semi-continuous and binary interpretation meth-
ods.
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2. Conclusion

Within this paper we describe the exercises undertaken as part
of STRmix™ developmental validation following the SWGDAM
guidelines for the validation of probabilistic genotyping software
[1]. This work demonstrates that STRmix™ is suitable for its
intended use for the interpretation of single source and mixed DNA
profiles including profiles of a complex and low level nature,

A number of different parameters within STRmix™ that are
known to affect LR reproducibility were investigated. We have
interpreted over 1200 profiles and conclude that at least 50,000
burn-in and 400,000 post burn-in accepts across eight Markov
chains and a RWSD of 0,005 are suitable STRmix™ run parameters
leading to reproducible LRs (within one order of magnitude) for
many different types of profile.

Having undertaken both internal and developmental valida-
tions following the SWGDAM guidelines we find them a good
template within which to work. Recommendations 3.2.5 (control
samples) and 3.2.6.2 (analysis of raw data files) are not applicable
to STRmix™,

Acknowledgements

The authors would like to thank Johanna Veth (ESR), John
Simich (Erie County, NY), Shawn Monpetit (San Diego, CA), Bjorn
Sutherland (ESR) and two anonymous reviewers for their helpful
comments that greatly improved this paper.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.
fsigen.2016.05.007 .

References

{1] Scientific Working Group on DNA Analysis Methods (SWGDAM). Guidelines
for the Validation of Probabilistic Genotyping Systems. 2015.

{2] B.Budowle, AJ. Onorato, T.F. Callagham, A.D. Manna, A.M. Gross, R.A, Guerreri,
et al,, Mixture Interpretation: defining the relevant features for guidelines for
the assessment of mixed DNA profiles in forensic casework, J. Forensic Sci. 54
{2009) 810-821.

[3] P.Gill,}. Buckleton, Commentary on: Budowle B, Onorato A}, Callaghan TF, delia
Manna A, Gross AM, Guerrieri RA, Luttman JC, McClure DL, Mixture
interpretation: Defining the relevant features for guidelines for the
assessment of mixed DNA profiles in forensic casework []. Forensic Sci. 2009,
54 (4), 810-821], J. Forensic Sci. 55 (2010) 265-268.

[4] ]S, Buckleton, C.M. Triggs, SJ. Walsh, DNA Evidence, CRC Press, Boca Raton,
Florida, 2004,

[5] 1.E. Dror, D. Charlton, A.E. Peron, Contextual information renders experts
vulnerable to making erroneous identifications, Forensic Sci. Int. 156 (2006}
74-78.

[6] W.C. Thempson, Painting the target around the matching profile: the Texas
sharpshooter faliacy in forensic DNA interpretation Law, Law Probab. Risk 8
(2009) 257-276,

[7] Scientific Working Group on DNA Analysis Methods (SWGDAM). SWGDAM
Interpretation Guidelines for Autosomal STR Typing by Forensic DNA Testing
Laboratories. 2010,

8] P.Gill, CH. Brenner, 1.5. Buckleton, A, Carracedo, M. Krawczak, W.R. Mayr, etal,,
DNA commission of the International Society of Forensic Genetics:
recommendations on the interpretation of mixtures, Forensic Sci. Int. 160
(2006) 90-101.

[9] H. Haned, Forensim: an open-source initiative for the evaluation of statistical
methods in forensic genetics, Forensic Sci. Int. Genet. 5 (2011) 265-268,

[10] H. Haned, P. Gill, Analysis of complex DNA mixtures using the Forensim
package, Forensic Sci. Int. Genet. Suppl. Ser. 3 (2011} e79-e80.

[11] DJ. Balding, J. Buckleton, Interpreting low template DNA profiles, Forensic Sci.
Int. Genet. 4 (2009) 1-10.

[12] K. Lobmueller, N. Rudin, Calculating the weight of evidence in low-template
forensic DNA casework, ]. Forensic Sci. 58 (s1) (2013) s234-59.

[13] A.A. Mitchell, J. Tamariz, K. O'Connell, N, Ducasse, Z. Budimlija, M. Prinz, et al,,
Validation of a DNA mixture statistics too! incorporating allelic drop-out and
drop-in, Forensic Sci. Int. Genet. 6 (2012} 749-761.

[14] D. Taylor, J.-A. Bright, J. Buckleton, The interpretation of single source and
mixed DNA profiles, Forensic Sci. int. Genet. 7 (2013) 516-528.

[15] FBI Quality Assurance Standards for Forensic DNA Testing Laboratories, 2011,

[16] J.-A. Bright, D. Taylor, J.M. Curran, ].S. Buckleton, Developing allelic and stutter
peak height models for a continuous method of DNA interpretation, Forensic
Sci. Int. Genet. 7 (2013) 296-304.

{17] ].-A. Bright, D. Taylor, C. .M, ].5. Buckleton, Degradation of forensic DNA
profiles, Aust. ]. Forensic Sci. 45 (2013) 445-449,

{18] ]. Buckleton, H. Kelly, J.-A. Bright, D. Taylor, T. Tvedebrink, J.M. Curran, Utilising
allelic dropout probabilities estimated by logistic regression in casework,
Forensic Sci. Int. Genet. 9 {2014) 9~11.

[19] R. Puch-Solis, A dropin peak height model, Forensic Sci. Int. Genet. 11 (2014)
80-84.

{20] C. Brookes, ].-A. Bright, S. Harbison, J. Buckleton, Characterising stutter in
forensic STR multiplexes, Forensic Sci. Int. Genet. 6 (2012} 58-63.

[21] J-A. Bright, ].M. Curran, }.S. Buckleton, Investigation into the performance of
different models for predicting stutter, Forensic Sci. Int. Genet. 7 (2013} 422~
427,

[22] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their
applications, Biometrika 57 (1976} 97-109.

{23} N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,
Equations of state calculations by fast computing machines, }. Chem. Phys. 21
(1953) 1087-1091.

[24] DJ. Balding, R.A. Nichols, DNA profile match probability calculation: how to
allow for population stratification, relatedness, database selection and single
bands, Forensic Sci. Int. 64 (1994) 125140,

[25] National Research Council Report: The Evaluation of Forensic DNA Evidence,
National Academy Press, Washington DC, 1996.

[26] D. Taylor, J.-A. Bright, ]. Buckleton, Considering relatives when assessing the
evidential strength of mixed DNA profiles, Forensic Sci. Int. Genet. 13 (2014}
259-263,

[28] J.-A. Bright, D. Taylor, J. Curran, }. Buckleton, Searching mixed DNA profiles
directly against profile databases, Forensic Sci. Int. Genet. 9 (2014} 102-110.

[29] D. Taylor, J.A. Bright, J. Buckleton, J. Curran, An iliustration of the effect of
various sources of uncertainty on DNA likelihood ratio calculations, Forensic
Sci. Int. Genet, 11 (2014) 56-63.

[30] C.M. Triggs, J.M. Curran, The sensitivity of the Bayesian HPD method to the
choice of prior, Sci. Justice 46 (2006) 169-178. ’

[31] D. Taylor, . Buckleton, J.-A. Bright, Factors affecting peak height variability for
short tandem repeat data, Forensic Sci. Int. Genet. 21 (2016} 126-133,

[32] J.-A. Bright, .M. Curran, Investigation into stutter ratio variability between
different laboratories, Forensic Sci. Int. Genet. 13 (2014) 79-81,

{33} H.Kelly, }.-A. Bright, ].S. Buckleton, ].M. Curran, Identifying and modelling the
drivers of stutter in forensic DNA profiles, Aust, |. Forensic Sci. 46 (2013) 194~
203.

[34] D.Taylor, J.-A. Bright, C. McGoven, C, Hefford, T. Kalafut, }. Buckleton, Validating
multiplexes for use in conjunction with modern interpretation strategies,
Forensic Sci. Int. Genet, 20 (2016) 6-19,

[35] J.-A. Bright, K.E. Stevenson, J.M. Curran, |.S. Buckieton, The variability in
likelihood ratios due to different mechanisms, Forensic Sci, Int. Genet. 14
(2015) 187-190.

[36] D. Taylor, J.A. Bright, ]. Buckleton, The ‘factor of two' issue in mixed DNA
profiles, J. Theor. Biol. 363 (2014) 300-306.

[37] D. Taylor, J. Buckleton, J.-A. Bright, Does the use of probabilistic genotyping
change the way we should view sub-threshold data? Aust. . Forensic Sci,
{2015}, doi:http://dx.doi.org/10.1080/00450618,2015.1122082.

[38} D. Taylor, Using continuous DNA interpretation methods to revisit likelihood
ratio behaviour, Forensic Sci. Int. Genet. 11 {2014} 144-153,

[39] D. Taylor, }. Buckleton, 1. Evett, Testing likelihood ratios produced from
complex DNA profiles, Forensic Sci. Int. Genet. 16 {2015} 165171,

{40} Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993). 1993.

{41} Kumbho Tire Co. Ltd et al. v. Carmichael et al. In: Court USS, editor, 526 US
1371999,

[42} J.-A. Bright, .M. Curran, 1.S. Buckieton, The effect of the uncertainty in the
number of contributors to mixed DNA profiles on profile interpretation,
Forensic Sci. Int. Genet, 12 (2014) 208-214.

{43] G. Dorum, 0. Bleka, P, Gill, H. Haned, L. Snipen, S, Sabe, et al,, Exact
computation of the distribution of likelihood ratios with forensic applications,
Forensic Sci. Int. Genet. 9 (2014) 93-101.

[44] P. Gill, H. Haned, A new methodological framework to interpret complex DNA
profiles using likelihood ratios, Forensic Sci. Int. Genet. 7 {2013) 251-263.

{45] H.Haned, G. Dorum, E. Egeland, P. Gill, On the meaning of the likelihood ratio:
is a large number always an indication of strength of evidence? 25th Congress
of the International Society for Forensic Genetics, Melbourne, Australia, 2013,

{46] M. Kruijver, R. Meester, K. Slooten, p-Values should not be used for evaluating
the strength of DNA evidence, Forensic Sci. Int. Genet. 16 (2016} 226-231,

[48] J.-A. Bright, 1.W. Evett, D. Taylor, J.M. Curran, }. Buckleton, A series of
recommended tests when validating probabilistic DNA profile interpretation
software, Forensic Sci. Int. Genet. 14 (2015} 125~131.

[49] A. Geliman, D.B. Rubin, Inference from iterative simulation using multiple
sequences, Stat. Sci. 7 {1992) 457511,

{50] A.Gelman, J.B. Carlin, H.S. Stem, D.B. Rubin, Bayesian Data Analysis, Chapman
& Hall, New York, 1995.

[51] J.-A. Bright, K. McManus, S, Harbison, P, Gill, . Buckleton, A comparison of
stochastic variation in mixed and unmixed casework and synthetic samples,
Forensic Sci. Int. Genet. 6 (2012) 180-184.




2:17-cr-20037-JES-JEH # 222-2 Page 14 of 14

J.-A. Bright et al. [ Forensic Science International: Genetics 23 (2016) 226-239 239

[52] j.-A. Bright, J. Turkington, J. Buckleton, Examination of the variability in mixed [55] J.-A. Bright, S. Cockerton, S. Harbison, A. Russell, O, Samson, K. Stevenson, The

DNA profile parameters for the Identifiler(TM} multiplex, Forensic Sci. Int. effect of cleaning agents on the ability to obtain DNA profiles using the

Genet. 4 {2009) 111-114, identifiler™ and PowerPlex® Y multiplex kits, J. Forensic Sci. 56 (2011) 181
[53] P. Gill, J. Curran, K. Eiliot, A graphical simulation model of the entire DNA 185.

process associated with the analysis of short tandem repeat loci, Nucleic Acids {56] R Development Core Team, R: A Language and Environment for Statistical

Res. 33 (2005) 632-643. Computing, R Foundation for Statistical Computing, Vienna, Austria, 2004,
[54]} ]. Weusten, J. Herbergs, A stochastic model of the processes in PCR based [57] T.W. Bille, S.M. Weitz, M.D. Coble, }.S. Buckleton, J.-A. Bright, Comparison of the

amplification of STR DNA in forensic applications, Forensic Sci. Int. Genet. § performance of different models for the interpretation of low level mixed DNA

(2012} 17-25. profiles, Electrophoresis 35 (2014) 3125-3133.




2:17-cr-20037-JES-JEH # 222-3 Page 1 of 19 E-FILED

Wednesday, 06 February, 2019 05:12:12 PM
Forensic Science International: Genetics 29 (2017) 126-144 Clerk, U.S. District Court, ILCD

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

Research paper

Internal validation of STRmix™ for the interpretation of single source @ Crosshark
and mixed DNA profiles

Tamyra R. Moretti®*, Rebecca S. Just?, Susannah C. Kehl?, Leah E. Willis?,
John S. Buckleton®Y, Jo-Anne Bright¢, Duncan A. Taylor®!, Anthony J. Onorato?

#DNA Support Unit, Federal Bureau of Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA

® Biometrics Analysis Section, Federal Bureau of Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA 22135, USA
©Institute of Environmental Science and Research, Private Bag 92021, Auckland 1025, New Zealand

9 National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA

€ Forensic Science South Australia, 21 Divett Place, Adelaide, SA 5000, Australia

fSchool of Biological Sciences, Flinders University, GPO Box 2100 Adelaide, SA, 5001 Australia

ARTICLE INFO ABSTRACT
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Received 28 July 2016 The interpretation of DNA evidence can entail analysis of challenging STR typing results. Genotypes

Received in revised form 15 March 2017 inferred from low quality or quantity specimens, or mixed DNA samples originating from multiple

Accepted 3 April 2017 contributors, can result in weak or inconclusive match probabilities when a binary interpretation method

Available online 5 April 2017 and necessary thresholds (such as a stochastic threshold) are employed. Probabilistic genotyping
approaches, such as fully continuous methods that incorporate empirically determined biological

Keywords: parameter models, enable usage of more of the profile information and reduce subjectivity in

STRs . interpretation. As a result, software-based probabilistic analyses tend to produce more consistent and

g:)Aba“gi‘l’i‘:;’izeé enotyping more informative results regarding potential contributors to DNA evidence. Studies to assess and
internally validate the probabilistic genotyping software STRmix™ for casework usage at the Federal

Likelihood Ratios
Bureau of Investigation Laboratory were conducted using lab-specific parameters and more than 300

single-source and mixed contributor profiles. Simulated forensic specimens, including constructed
mixtures that included DNA from two to five donors across a broad range of template amounts and
contributor proportions, were used to examine the sensitivity and specificity of the system via more than
60,000 tests comparing hundreds of known contributors and non-contributors to the specimens.
Conditioned analyses, concurrent interpretation of amplification replicates, and application of an
incorrect contributor number were also performed to further investigate software performance and
probe the limitations of the system. In addition, the results from manual and probabilistic interpretation
of both prepared and evidentiary mixtures were compared.

The findings support that STRmix™ is sufficiently robust for implementation in forensic laboratories,
offering numerous advantages over historical methods of DNA profile analysis and greater statistical
power for the estimation of evidentiary weight, and can be used reliably in human identification testing.
With few exceptions, likelihood ratio results reflected intuitively correct estimates of the weight of the
genotype possibilities and known contributor genotypes. This comprehensive evaluation provides a
model in accordance with SWGDAM recommendations for internal validation of a probabilistic
genotyping system for DNA evidence interpretation

© 2017 Published by Elsevier Ireland Ltd.

1. Introduction

As the sensitivity of forensic DNA typing procedures has
improved with the development of better DNA extraction and
amplification chemistries and detection instrumentation, more

-_ DNA profiles originating from the DNA of two or more individuals
* Corresponding author. are being encountered in forensic casework. The complexity of
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a mixture, particularly if the DNA contribution is low and therefore
subject to stochastic effects (e.g., allele dropout and greater
heterozygous peak height variance). Binary decision making can be
applied to the interpretation of mixed profiles and has historically
been used in many aspects of the analysis of DNA for human
identification purposes. This approach has provided an easily
applied means of addressing biological phenomena exhibited in
PCR-based typing results at short tandem repeat (STR) loci [1-3].
Two primary outcomes are considered in a binary interpretation
method. For example, (a) a peak observed in an electropherogram
at an expected stutter position is interpreted as either stutter or an
allelic peak based on relative height, (b) two allelic peaks are
interpreted as having originated from the same or different
individuals depending on whether they fall within height variance
expectations for heterozygous alleles, and (c) an allele is either
used or not used to estimate evidential weight based on whether
its height meets an empirically determined stochastic threshold
[4].

Such “either-or” determinations, however, can be difficult to
make given the characteristics of STR mixture results. The primary
criterion used in STR interpretation is peak amplitude, relative to
the size and position of the peak in the electropherogram. Yet, the
sharing of an allele with that of another contributor and/or with a
stutter product renders peak height information less meaningful.
Furthermore, locus-specific amplification efficiencies and DNA
degradation, which can vary in degree among contributors in a
mixture, impact relative peak heights, Also, an allelic component of
peaks that qualify as stutter cannot be ruled out when alleles from
a minor contributor(s) are in the same general height range as
stutter peaks [2]. Together with the possibility of allele dropout,
the intricacies of mixture analysis create scientific uncertainty in
the determination of possible contributor genotypes and can
complicate manual interpretation of mixed DNA profiles.

The use of safeguards (such as a stochastic threshold) was
recommended by the Scientific Working Group on DNA Analysis
Methods (SWGDAM) to mitigate the uncertainty inherent to binary
interpretation of single source, mixed-source and low-level typing
results [5]. These safeguards, if applied correctly, tend to limit the
usage of profile information and thereby typically lead to more
common profile probability estimates, as well as more inconclusive
conclusions.

Statistical software programs that incorporate probabilistic
interpretation models overcome these limitations and fully utilize
the available DNA typing information [6-9]. Probabilistic genotyp-
ing refers to the use of software and computer algorithms to apply
biological modeling, statistical theory, and probability distribu-
tions to infer the probability of the profile from single source and
mixed DNA typing results given different contributor genotypes
[10]. The software weighs potential genotypic solutions for a
mixture by utilizing more DNA typing information (e.g, peak
height, allelic designation and molecular weight) and accounting
for uncertainty in random variables within the model, such as peak
heights (e.g., via peak height variance parameters and probabilities
of allelic dropout and drop-in, rather than a stochastic or dropout
threshold). Likelihood ratios (LRs) are generated to express the
weight of the DNA evidence given two user-defined propositions.
Probabilistic genotyping software has been demonstrated to
reduce subjectivity in the interpretation of DNA typing results
and, compared to binary interpretation methods, is a more
powerful tool supporting the inclusion of contributors to a DNA
sample and the exclusion of non-contributors [11]. Despite the
effectual incorporation of higher level interpretation features,
though, probabilistic software programs are not Expert Systems as
defined under the National DNA Index System (NDIS) Procedures
{12]. The DNA typing data and probabilistic genotyping results
require human interpretation and review in accordance with the

Quality Assurance Standards for Forensic DNA Testing Laboratories
{131

The fundamental onus on the forensic laboratory with regard to
the analysis of DNA mixtures is to seek to remain current with
technological developments and relevant issues and to ensure the
reliability of its procedures and usage in casework by properly and
thoroughly validating any new method prior to use. The
interpretation of complex mixtures in particular requires that
the laboratory design and execute thorough, targeted experimen-
tal studies as part of its internal validation, recognize limitations
revealed through the results, and use the results of validation
studies to develop detailed, reliable procedures that can be applied
uniformly and consistently among analysts. SWGDAM provides
guidelines and the Quality Assurance Standards for Forensic DNA
Testing Laboratories provide quality assurance requirements for
validation {13,14].

We outline here the internal validation of STRmix™ {6,15] at
the FBI Laboratory in accordance with SWGDAM Guidelines for the
Validation of Probabilistic Genotyping Systems [10}. STRmix™ is
software that employs a continuous model for DNA profile
interpretation and genotype determination based on a Markov
Chain Monte Carlo (MCMC) sampling method. Using weights
assigned to the resultant genotypes or genotype sets, STRmix™
calculates LRs, which are the probability of the DNA evidence under
two opposing hypotheses referred to as H; and Ha. The terms Hy
and H, are used in lieu of “Prosecution hypothesis” (Hp) and
“Defense hypothesis” (Hy), respectively, given that they are
assigned by the scientist, usually without consultation with legal
representatives.

A LR greater than 1 provides support for a specified person of
interest as a contributor to the DNA evidence (H;), whereas an LR
less than 1 provides support that the person of interest is not a
contributor (H,). An LR of 1 provides no greater support for either
proposition. We describe suitable experiments using single source
samples and a breadth of mixed DNA samples to meet the
recommendations and requirements for internal validation and
detail additional testing conducted at the FBI Laboratory to aid in
procedural and policy development,

2, Methods

All single source and mixed DNA profiles were generated in-
house using DNA samples (collected and typed with informed
consent) that were amplified for 27 cycles using the Applied
Biosystems AmpFISTR® Identifiler® Plus PCR Amplification Kit
(Thermo Fisher Scientific, Waltham, MA), followed by detection on
a 3130x! Genetic Analyzer (Thermo Fisher Scientific). 3130xl data
were subsequently analyzed using Applied Biosystems Gen-
eMapper® ID-X version 1.3 (Thermo Fisher Scientific). Protocols
and analysis settings (including an analytical threshold of 50
relative fluorescent units, or rfu) previously validated by the FBI
Laboratory for casework usage were used to prepare DNA samples,
generate DNA typing results and perform preliminary interpreta-
tions prior to STRmix™ analysis. Given that STRmix™ version 2.3
models back stutter of one repeat unit, such peaks were retained in
all input files for questioned profiles. All other artifact peak labels
were removed following FBI Laboratory guidelines, including
forward stutter, which is not modeled by the software versions
tested.

Laboratory-specific STRmix™ parameters were established
using more than 1400 single source Identifiler™ Plus profiles of
variable quantity and quality (Table S1). Some DNA extracts used
for parameter setting were artificially degraded during 90 or
180 seconds of UV irradiation using a Spectrolinker™ X1-1000 UV
Crosslinker (Spectronics Corporation, Westbury, NY), with the
samples placed, caps open, 2.5 inches from the ultraviolet light
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source, Degradation was confirmed following amplification of the
irradiated extracts (serially diluted for amplification of 1ng-
0.03ng template DNA) and demonstration of complete locus
dropout, particularly of higher molecular weight alleles, at one or
more loci. Per allele stutter ratio (SR} expectations were deter-
mined by regressing SR against allele designation and SR against
the longest uninterrupted stretch (LUS) of repeats within an allele
for some compound or complex repeats (e.g., TH01 9.3 allele has a
LUS of 6 repeat units [16]). The maximum allowable stutter ratio
was set arbitrarily high at 0.3, or 30% (this parameter is used in the
initial assessment of potential alleles, not in stutter modeling, only
for run time pick up). For saturated data (peaks generated from
high template amounts and/or over-amplification that saturate the
camera within the genetic analyzer), an alternate model is invoked
within STRmix™ since the relationship of DNA template to peak
height is no longer linear. Specifically, the height of a given stutter
peak is not determined from the observed (saturated) allele but
from an expected allele height based on the proposed model. Based
on empirical 3030xI data, a peak height upper limit of 7000 rfu was
established for saturation.

The ModelMaker function within STRmix™ uses a MCMC
system to analyze a set of laboratory data of known origin in order
to determine the distribution of peak height variability specific to
the laboratory {17]. This process is used to establish a distribution
of expected values for allele, stutter and locus specific amplifica-
tion variances that are used by STRmix™ in the analysis of data
[15,17,18]. By assessing over 700 single source profiles of varying
quantity and quality (Table S1) using ModelMaker, peak height
variance constant prior distributions for allelic peaks [
I(4.2818,1.0671) with a mode of 4.219] and for stutter peaks
[k?, T(9.1442,1.1239) with a mode of 7.528] and a mean locus-
specific amplification efficiency variance (0.0113) were deter-
mined.

The peak height variance constant is explained using the allelic
example (the other distributions have similar forms): the
distribution for allelic peaks has a mode at 4.219, and 95% of
values for allele variance fall between 1.3 and 9.9. These values
depict the way that variance changes with peak height (high at low
template and low at high template). There is a relationship
between peak variance and heterozygote balance (Hb) [19,20]. To
show this, logo(Hb) was plotted against average peak height (APH,
based on rfu values of alleles at heterozygote loci), and the

expected 95% bounds were calculated at £v/2 x 1.96 x /75, Where
c?=4.219. Such a graph (Fig. 1) allows for assessment of the

logyglHb)

-1.0 T
0 1000 2000 3000 4000
APH

Fig. 1. Plot of log;e(Hb) versus APH for 4125 heterozygote loci from 709 single
source ModelMaker profiles. The dashed lines represent the expected 95% bounds
and encapsulate 97.6% of all data points.

parameters: with 97.6% of the Hb data falling within the 95%
bounds, allelic variance was demonstrated to be sufficiently
optimized,

The drop-in rate was set to zero since no allelic peaks >50 rfu
were detected at the 16 Identifiler® Plus loci following 27 cycles of
amplification of 500 reagent blanks extracted using the EZ1®
Advanced XL (QIAGEN Sciences, Inc., Gaithersburg, MD), nor in any
amplified DNA sample throughout the study.

To confirm proper calculation of the LR by STRmix™, the LR for
two single source profiles and two two-person mixtures (57
individual loci), where weights determined by STRmix™ equaled
both one and less than one for the known contributor profile, were
calculated “manually” within Excel. Loci included both heterozy-
gous and homozygous examples, and calculations were undertak-
enwith 8=0.01 and 6 =0. Setting 6 to zero returns the product rule,
where LR equals:

2pip; for heterozygous loci (i #j)

pi for homozygous loci.

When 6 >0, the Balding and Nichols formulae [21] (or equations
4,10 from NRC 11 {22]) are applied. For single source profiles:

200+ (1 - O)p][0+ (1 - O)p)]

+06)(1+20) for heterozygous loci (1)

36+ (1 -0)pli26 + (1
(1+6)(1+20)

where p; is the allele frequency for allele i,p; the allele frequency for
allele j and 0 is the Fsy value, The allele frequencies used within
equations 1 and 2 are posterior mean frequencies. These are
calculated using the following equation:

Xi+14

N, 1 3)
where x; is the number of observations of allele i in a database, N, is
the number of alleles at that locus in the database and k is the
number of allele designations with non-zero observations in the
database at the locus which the allele, whose probability is being
calculated, resides.

Data used for internal validation studies included DNA typing
results from serially diluted single source samples (0.031-1ng)
amplified in duplicate. Additionally, a total of 290 two, three, four
and five-person mixture profiles, prepared using DNA from
thirteen contributors with varying individual template amounts
(0.006-3.2ng) and total template amounts (0.019-4ng), were
created in a range of contributor ratios (Table S2). Two DNA
extracts used for mixture preparation were artificially degraded by
UV irradiation as described. Some contributor samples were
selected based on alleles shared with other contributors or unique
to a single contributor (obligate). The resulting profiles variously
exhibited inter- and intra-locus peak height variation, complete
profile recovery, allele and locus dropout, DNA degradation,
additive effects of allele or stutter peak sharing and peak saturation
(off-scale peaks). APH for a given contributor was calculated as the
average of the heights of all obligate alleles, with undetected
obligate alleles assigned a peak height of either 0 or 25rfu, as
noted.

Adjudicated case studies entailed 30 evidentiary mixtures that
had been previously developed using Identifiler® Plus and
reported as originating from two to five individuals, STRmix™
analyses included the reference DNA profiles of one to four subjects
of investigation.

DNA typing results from all single source, mixed and forensic
specimens were exported from GeneMapper® ID-X and imported

— 0Pl ¢, homozygous loci 2)
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into STRmix™, where they were interpreted using the established
laboratory-specific parameters in STRmix™ version 2.3.06 (http://
strmix.esr.cri.nz/). A subset of five-person mixtures was examined
using STRmix™ version 2.3.06. Subsequently, the complete set of
five-person mixtures was interpreted using STRmix™ version
2.4.02. STRmix™ analyses of single source profiles were conducted
according to the propositions:

Hi: The DNA originated from the person of interest

H,: The DNA originated from an unknown, unrelated individual

For mixtures of N contributors, STRmix™ analyses were conducted
according to the propositions:

Hi: The DNA originated from the person of interest and N-1
unknown, unrelated individual(s)

H,: The DNA originated from N unknown, unrelated individuals

Obligate alleles, template amount and APH were evaluated relative
to the STRmix™ results.

Conditional STRmix™ analyses of some mixtures were performed
assuming the presence of DNA from a known individual, according
to the propositions:

H,: The DNA originated from the assumed individual, the person of
interest and N-2 unknown individual(s)

Hy: The DNA originated from the assumed individual and N-1
unknown individual(s)

Also, for some mixtures, multiple contributors were assessed
concurrently in STRmix™, according to the proposition:

Hy: The DNA originated from person of interest 1, person of interest
2 and N-2 unknown individual(s)

Hs: The DNA originated from N unknown individuals.

Where indicated for H,-true tests, two-hundred non-contributor
profiles, which were artificially constructed in Excel™ by
randomly sampling alleles from the FBI's U.S. Caucasian allele
frequency database {23-26] based on their observed frequency,
were analyzed in STRmix™ as persons of interest.

For one, two and three-contributor profiles, STRmix™ analyses
were also performed assuming N+1 contributors. To assess N—1
contributors in a manner that would not result in an exclusion
outright (i.e., as would five alleles per locus under the assumption
of two contributors), some two-person mixture results were
modified to simulate a third contributor with no new alleles. This
was done by manipulating the input files directly in Excel™, as
follows: in order to avoid creating a 5th allele, a ‘child’ of the two
contributors was constructed by adding 50 rfu to the peaks
selected to be shared by parent and child. Two additional mixtures
were thus created by increasing peak heights by 100rfu and
200 rfu. With this approach, a virtual child, present as a trace or
minor contributor, represented a third contributor in a mixture
that could be interpreted as a two-person mixture.

The default MCMC number of accepts (100,000 burn-in and
400,000 post burn-in) were used to assign weights, which were
used in the calculation of LRs in STRmix™ using the population
genetic model described in Balding and Nichols {21], referencing

Table 1
Summary of mixtures and propositions tested in STRmix™,

equations 4.10 in NRC11{22] to correct for population substructure.
Statistical calculations were based on allele frequencies from the
FBI U.S. Caucasian database following STRmix™ execution in
either (a) the standard analysis mode with a 8 point estimate of
0.01 or (b) the Database Search mode.

The Database Search function, which produces a total
“investigative” LR that does not include € in the calculation, was
used to facilitate rapid consideration of a large number of non-
contributor propositions (i.e., specificity testing), as well as known
contributor propositions (i.e., sensitivity testing) for the mixtures
summarized in Table 1 [27]. Some mixtures were interpreted or
reinterpreted using the standard mixture analysis mode to develop
a lower-bound highest posterior density (HPD) LR, in addition to a
total “evaluative” LR, with the HPD interval set to 99.0% and the N!
calculation [28] enabled. For sensitivity and specificity assessment,
equations derived from a best fit regression analysis of the
investigative LR and evaluative HPD LR results of the same
mixtures {Fig. S1) were applied to the investigative LR values to
derive HPD LR estimates. Based on these estimates, tests that
generated a HPD LR < 1 for H,-true propositions and a HPD LR>1
for H,-true propositions were re-analyzed in STRmix™ for
verification purposes. Given that the equation derived for four-
person mixtures was suitable for application to the five-person
mixtures for purposes of establishing HPD LR estimates, re-
analyses in STRmix™ to develop HPD LRs were not performed for
five-person mixtures due to computational constraints.

Precision was evaluated through five repeated interpretations
of one, two, three and four-person typing results, with both the
minor and major contributor considered the person of interest in
H,. The effect on repeatability by increasing the total number of
MCMC accepts from 500,000 to 600,000 and 700,000 and the
Random Walk Standard Deviation (RWSD) from 0.005 to 0.01 and
0.02 was evaluated.

STRmix™ analyses of the adjudicated case mixtures were
performed in standard analysis mode using the U.S. Caucasian
database (0=0,01) or, where match probabilities had been
reported for Native Americans, a Navajo database [25,26]
(6=0.03) to generate total LRs and HPD LRs. For some assessments,
the reciprocal of HPD LRs between 0 and 1 was calculated.

For both the evidentiary mixtures and a subset of the prepared
mixtures, the results of STRmix™ and manual analyses of the same
data were compared to evaluate general consistency of the results.
Manual profile interpretations and calculation of random match
probabilities (RMPs) and combined probabilities of inclusion (CPlIs)
were performed in accordance with FBI Laboratory standard
operating procedures, including usage of a stochastic threshold
(200 rfu).

3. Results and Discussion
3.1. Verification of model performance, accuracy and precision
For a small subset of profiles, the LR is evident without

calculation or can be estimated easily as described in Bright et al.
[29]. These include single source profiles where the genotype at

Number of Contributor Total mixture Contributor ratio range Number of mixtures Number of Hy-true Number of Hy-true
contributors template range template range interpreted propositions tested propositions tested
2 0.006 to 0.9ng 0.019 to I ng 10:1 to 1:1 105 202 22,504

3 0.021 to 1ng 0.38 to 3ng 16:1:1 to 1:1:1 64 192 13,620

4 0.05 to 3.2ng 1to4ng 16:1:1:1 to 1:1:1:1 84 336 17,808

5 0.016 to 1.25ng 0.25to 2ng 10:1:1:2:2 to 1:1:1:1:1 24 120 5,256
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each locus is unambiguous, and hence the weight for the correct
genotype combination is expected to be 1. As an initial verification
of software performance, manually calculated LRs for individual
loci in a single source sample were identical to the corresponding
LRs produced by STRmix™, and STRmix™ reported correct
genotypes for the known contributor.

As an additional verification of model performance, using a
serially-diluted single source sample, LRs based on STRmix™
analyses were demonstrated to decrease with template amount
(1-0.03ng) (Fig. S2). As expected, the LR progressed from the
maximum value for the full profile (attained at >0.25 ng) towards
log(LR)=0 due to allele dropout as DNA template decreased {11].
For profiles exhibiting higher levels of dropout, simultaneous
analysis of amplification replicates in STRmix™ resulted in a
higher LR. The mass parameter £ (template, or DNA amount) in the
STRmix™ output declined steadily with decreasing peak heights,
as expected (Table 2).

Weights generated by STRmix™ were assessed as a measure of
the deconvolution process and model performance. Any contribu-
tor genotypes deconvoluted manually by a skilled analyst should
exhibit intuitively correct, high weights and thereby indicate
proper modeling. The most weight is expected to be assigned to
genotype sets that correspond to the genotypes of the DNA donors.
The result of such an assignment of weight is high levels of support
for the inclusion of DNA contributors and exclusion of non-
contributors when assessed using LRs (depending on profile
quality) [11]. Counterintuitive weights are an indication of poor
biological modeling or incorrect tuning of the models. Inspection
of the STRmix™ output, including weights over the range of single
source and mixed DNA profiles, showed the anticipated response
to relative template amounts, with lower weights for genotypes
that exhibited allelic dropout (Fig. S2).

Mixture proportions were assessed as a final check of model
performance, using two-person mixtures constructed in the ratios
1:10, 1:5, 1:3 and 1:1. Mixture proportions obtained from the
STRmix™ output (1:10.1, 1:4.0, 1:1.9, 1:1.0) were similar to the
targeted proportions. The minor differences from the expected
values may be attributable to variability of quantitative PCR results
andfor pipetting. A plot of log(LR) for each mixture type
considering both the major and minor contributors is provided
in Fig. S3. The maximum potential log(LRs) based on a single
source, full profile for each contributor are plotted as horizontal
dashed lines. As expected, the LR calculated for the major
contributor trended from the maximum potential LR at 10:1
downward, with the lowest LR produced for the 1:1 mixture. The
decrease in LR occurs where peak heights of major and minor
alleles begin to fall within heterozygous peak height variance
expectations (here, less than 1:3). The LR for the minor contributor
did not reach the maxirmum potential LR for a single source profile.
At 1:10, some alleles from the minor contributor may be dropped,

Table 2
Summary of single source dilution series interpreted in STRmix™ demonstrating
the decrease in LR with APH and template quantity, t.

Input DNA, ng log(LR) log(HPD) APH, rfu t
1 18.38 17.71 1366 1975
18.38 18.11 1241 1935
0.5 18.38 18.12 612 929
18.38 18.01 618 861
0.25 18.38 18.06 325 484
18.38 18.01 226 302
0.125 16.99 16.48 138 190
14.58 14.15 151 194
0.063 9.02 8.82 107 115
1170 1137 101 99
0.031 6.12 5.89 82 61

4.66 4.35 68 4?2

masked by major contributor alleles, or obscured by stutter peaks
from the major contributor. At 1:5, an increase in LR for the minor
contributor was observed, perhaps as the distinction between
minor contributor and major contributor stutter peaks is greater
and allele sharing is more evident from assessment of peak heights.
At 1:3 and 1:1, the LR decreased as the minor and major contributor
alleles were less distinct. These data demonstrate that as an
analyst’s ability to manually deconvolute a mixture decreases, the
weights assigned to genotype sets also decrease and are reflected
in lower LRs.

For the mixed typing resulits, LRs for both the major and minor
contributors varied within one order of magnitude (comparing the
minimum and maximum LR) across five repeated interpretations,
as expected due to MCMC sampling [30]. For mixtures with similar
donor contributions (1:2 and 1:1 ratios), greater LR variability was
occasionally encountered but typically still fell within two orders
of magnitude. While increasing the number of MCMC iterations
and RSWD might be expected to improve repeatability, no
consistent benefit was observed in such trials relative to the
minor contributors tested. However, given the conservatism
inherent in the use of NRC Il equations 4.10 and 8 point estimates
in STRmix™, along with a HPD interval set to 99.0%, the observed
variability in LR is within acceptable levels {31-34].

3.2. Sensitivity and specificity studies

Sensitivity of a probabilistic genotyping system refers to the
ability of the software to reliably support the presence of a
contributor's DNA within the DNA typing results. Sensitivity
studies demonstrate the propensity of the system to return
support for H, for a Hy-true test (ie. the presence of a true
contributor’s DNA in the profile is not supported}) [ 10]. It should be
noted, however, that failure to detect alleles and/or return support
for the presence of a low-level known contributor do not
necessarily constitute an error in the analytical process or
probabilistic genotyping system. In general, the LR for a true
contributor should be high but trend to 1 as less typing information
to aid interpretation is available and as the number of contributors
increases. Information that aids interpretation includes the
detection of more alleles from a given contributor, a conditioning
profile (e.g., from the donor of an intimate sample) and replicate
amplification results from a DNA sample.

Specificity of a probabilistic genotyping system refers to the
ability to reliably support the absence of a non-contributor's DNA
within the DNA typing results, Specificity studies demonstrate the
propensity of the system to return support for H; for a Hp-true test
[10].

For any mixture study, the proportion of analyses that provide
support for a true or false hypothesis (H, or H,) is dependent on the
design and quantities of the mixtures tested and should not be
used as an indication of error expectations. In this study, the
specificity and sensitivity of STRmix™ were tested using a total of
277 two, three, four and five-person mixtures (Table 1). These
mixtures exhibited the range of features typically encountered in
forensic casework and included many challenging specimens (e.g.,
with degraded DNA and/or multipie contributors of similar low-
level template quantities), specifically to identify potential
limitations of the software,

The Database Search mode of STRmix™ was initially used to
efficiently execute more than 60,000 comparisons to a ‘database’ of
the true mixture contributor profiles and 200 non-contributor
profiles, for a total of 855 H;-true tests and 59,188 H,-true tests.
The known number of contributors to these mixtures was used for
these analyses. Generally, at high template levels STRmix™
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returned high LRs for true contributors and LRs of zero for non-
contributors (Figs. S4 through S7).

As contributor template amount decreased andfor contributor
number increased, LRs trended to 1. The LRs for 255 mixtures were
converted to HPD LR estimates according to the equations in Fig. S1.
The HPD probability interval provides a one-sided, lower bound

A) Two-person mixtures

point value based on a LR distribution that reflects both population
sampling effects and MCMC variability. The HPD LR can thus be
interpreted and reported in a manner similar to a confidence
interval. All propositions generating an HPD LR estimate that
provided support for the false proposition were re-analyzed for
assessment of a STRmix™-generated HPD LR. The estimated and
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Fig. 2. Sensitivity and specificity of STRmix™ interpretation of two, three, four and five person mixtures. The plots display estimated 99.0% one-sided lower-bound HPD LRs
for true contributors and known non-contributors proposed as contributors to (A) two-person, (B) three-person, (C) four-person, and (D) five-person mixed DNA profiles. The
number of mixtures and propositions tested is provided in Table 1; results for tests using poor quality profiles, as discussed, are not plotted. HPD LRs greater than 1 indicate
support for the H; (contributor) hypothesis, whereas HPD LRs less than 1 (here, converted from decimals to positive integers by taking the reciprocal) indicate support for the
H, (non-contributor) hypothesis, Here, sensitivity is indicated by the percentage of H;-true propositions (blue bars) within the blue-shaded area (HPD LR>1) versus the
percentage in the orange-shaded area (HPD LR < 1), Similarly, specificity is indicated by the percentage of Hy-true propositions (orange bars) within the orange-shaded area
compared to the blue-shaded area. In tofal, the histograms in panels A-D represent more than 800 known contributor (H,-true) propositions, and more than 50,000 non-
contributor (Ha-true) propositions. Panel E shows the improvement in specificity for five-person mixtures when interpretations are conditioned on a known contributor.
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Fig. 2. (Continued)

calculated HPD LRs were found to be different by only 0.16 orders of
magnitude on average. Overall, the HPD LRs indicated very high
sensitivity and specificity of STRmix™ analysis (Fig. 2).

For two-person mixtures (Figs. 2 and 3) spanning ratios of 1:1-
1:20 and donor contributions of 0.006 ng to 0.90 ng, all Hy-true
propositions (N=166) for both contributors resulted in HPD
LRs>100. The majority of HPD LRs (95%) exceeded 1 million.
Nearly all H,-true propositions for the two-person mixtures
produced exclusions (HPD LR=0). All non-zero LRs for H-true
propositions correctly provided support for H,, with the exception
of two that incorrectly provided support for H, (discussed below).

For three-person mixtures (Figs. 2 and 3) spanning ratios of
1:1:1-1:1:16 and donor contributions of 0.02 ng to 1 ng, 87% of Hy-
true propositions (N=192 total tests) resulted in HPD LRs> 1, As
with two-person mixtures, the majority of HPD LRs (73%) exceeded
1 million. A small portion of H;-true propositions for the three-
person mixtures resulted in HPD LRs < 1. These findings occurred
when little or no indication of the known contributor was observed
in the STR profile due to DNA levels typically <50 pg, allele sharing
and dropout; in fact, only two H;-true propositions produced
LRs < 1 when the APH and number of obligate alleles for the minor
contributors were >0, Five false exclusions were returned for true
contributor tests due to poor profile quality (unresolved alleles

differing in size by 1bp; discussed below). As compared to two-
person mixtures, fewer of the non-contributor propositions (65%)
(N=13,620 total tests) resulted in exclusions, though most HPD LRs
(>99%) were less than 1 and correctly indicated support for H,.
Incorrect Hy-support resulted from 26 H,-true propositions for the
three-person mixtures (discussed below). Given that these
analyses were conducted using the known number of contributors
to the mixtures, and because several of the incorrect support
results occurred with an undetected known minor contributor
(APH and number of obligate alleles for the minor contributor
equaling 0), the mixtures producing false H;-support were
recalculated in STRmix™ using the observed number of contrib-
utors. Based on this re-analysis, 7 of 13,620 non-contributor
propositions generated LRs >1 (2-27) (Table 3).

For four-person mixtures (Figs. 2 and 3) spanning ratios of
1:1:1:1 to 1:1:1:16 and donor contributions of 0.05ng to 3.2 ng,
96% of Hy~true propositions (N=336) resulted in HPD LRs>1, and
27% exceeded 1 million. For Hi-true propositions, one mixture and
its replicate amplification produced false-H, support for a known
minor contributor that was present in both mixtures at 50 pg. Five
false exclusions were returned for true contributor tests due to
poor profile quality (“saturated” allelic peaks derived from 4ng
contributor template inputs; discussed below). All H,-true
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Fig. 3. HPD LRs that provided incorrect support for H; or H,, For the contributor and non-contributor tests for which estimated HPD LRs indicated incorrect support for Hy or
Hs, respectively, actual HPD [Rs were calculated using the standard mixture analysis mode and using the known number of contributors to the mixture, The number of
mixtures and propositions tested is provided in Table 1. In the H;-true plots, average peak heights (APH) are based on the rfu values for all obligate (unshared) alleles for the
contributor tested, with dropout of an obligate allele captured as rfu=0, As the known number of contributors was used for the interpretations, rather than the number of
contributors that would be inferred via visual review of the electropherogram, in some instances no obligate alleles were detected for a minor contributor, and thus APH also
equals zero. All x-axis values for the non-contributor tests are based on the highest value for any minor contributor to the mixture, The open markers in the plotsindicate HPD
LR=1 (inconclusive) results.
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Table 3
HPD LR results that failed to support the correct hypothesis.

(A) Hy-True Hypotheses

# of Contributors  Contributor Ratic Mixture Identifier Person of

Contributor Template (pg) Obligate Alleles Contributor APH

1/HPD LR Inconclusive (HPD

Interest L[R=1)
3 16:1:1 Cc1 Known:] 21 1 9 1
C2 Known: ] 21 0 0 1
3 8:1:1 D1 Known: F 42 0 0 20
D1 Known: ] 42 0 0 120
D.2 Known: F 42 0 0 6
D.2 Known: ] 42 0 0 21
3 16:1:1 El Known:] 21 0 0 9
E2 Known: ] 21 0 0 280
3 2:1:1 El Known: B 167 3 37 36
3 8:1:1 G.1 Known: B 63 1 4 2
3 8:1:1 H.2 Known: B 42 0 0 57
H.2 Known: F 42 0 0 430
3 16:1:1 J1 Known: B 21 0 0 71
J2 Known: F 21 0 (o] 1500
3 8:1:1 K1 Known: B 42 1 6 1
K2 Known: B 42 0 4
4 16:1:1 0.1 Known: A 50 1 6 26
0.2 Known: A 50 0 460
(B) Hy-True Hypotheses
#of Contributor  Mixture Non-Contributor Contributor Obligate Minor  Maximum Minor HPD laconclusive (HPD
Contributors  Ratio Identifier® Identifier” Template (pg) Alleles Contributor APH LR IR=1)
2 10:01 Al Rand: 148 100 4 79 980
Al Rand: 179 100 4 79 9
3 16:01:01 Cca Rand: 19 21 1 9 27
C1 Rand: 157 21 9 20
C1 Rand: 62 21 9 1
3 16:01:01 11 Rand: 12 31 0 0 10
11 Rand: 129 31 0 0 7
11 Known: Q 31 0 0 2
11 Known: T 31 0 0 2
1.2 Rand: 199 31 0 0 8
12 Rand: 154 3 0 0 1

STRmix results are shown for all (A) Hy-true hypotheses that returned support for Hz or HPD LR =1, followed by {B) H,-true hypotheses that returned support for H» or HPD

IR=1.

2 Each mixture is designated with a letter (e.g., C), with replicate amplifications of the mixed DNA extract designated as .1 and .2,

b The mixtures were analyzed in STRmix™ with the specified POL

propositions with the exception of 5 produced LRs <1 (discussed
below). Two of the incorrect Hy-support results occurred with the
APH and number of obligate alleles for the minor contributor
equaling 0. After re-analysis using the observed rather than the
known number of contributors, none of the 17,808 non-contributor
propositions generated LRs>1 (Table 3).

For five-person mixtures (Figs. 2 and 3) spanning ratios of
1:1:1:1:1-1:1:2:2:10 and donor contributions of 0.02 ng to 1ng,
58% of Hy-true propositions (N=120) resulted in HPD LRs>1, and
23% exceeded 1 million, This lowered sensitivity is expected given
the high number of contributors per sample and very low DNA
inputs for some contributors. Yet resuits from the H,-true tests
indicated that specificity is still high with five-person mixtures:
97% of HPD LRs were <1 (N=5256 total tests). Specificity was
further improved when the STRmix™ interpretations were
conditioned on one known contributor. For these analyses, >99%
of Hi-true propositions resulted in HPD LRs <1 (N=3200), and
only four resulted in incorrect Hy support.

Overall across 60,000 STRmix™ analyses, the majority of HPD
LRs indicating false H,-support for known contributor propositions

ranged from 2 to 2,200 and occurred with 3 or more contributor
mixtures that generally exhibited 0 or 1 obligate minor alleles.
False H;-support for known non-contributors was typically
demonstrated by LRs < 10 (though the highest LR was 980) for
mixtures of three or more contributors exhibiting 0 to 4 obligate
minor alleles. To further explore the results demonstrated with low
level DNA contributions, STRmix™ Database Search results for

- known contributor testing (H,-true) and non-contributor testing

(H,-true) for the three and four-person mixtures are provided in
Fig. 4, a plot of log(LR) versus average peak height of the individual
contributors for profiles where individual contributions were less
than 100 pg. While the HPD LRs calculated for these same tests
(discussed and tallied above as, for example, incorrect Hy support
for three and four-person mixtures) are lower for true contributors
than the LRs shown in Fig. 4 (and in some instances returned
correct support whereas the Database Search returned incorrect
support), the results indicate that STRmix™ was able to correctly
separate out true from false contributors even at low levels of DNA.
Some low level false positive results were observed, as expected
given the complexity of mixtures (i.e.,, number of contributors and
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Fig. 4. Plot of log(LR) versus average peak height (APH) per contributor for three and four person mixtures where individual contributions are < 100 pg DNA. In the second
pane the y-axis has been truncated at +/-— log(LR)=10 in order to better see the results,

low level DNA contributions). To further assess the utility of
STRmix™ for discerning minor contributors, the range of HPD LR
estimates for all minor contributors to the two and three-person
mixtures was considered with respect to differing contributor
ratios, DNA inputs and, for the two-person mixtures, DNA
degradation (Fig. 5). As would be expected due to profile quality,
comparisons to two-person mixtures in which one or both DNA
extracts were degraded resulted in both lower and more variable
HPD LR values than when no degradation was present. However,
aside from the lowest DNA input tested for the degraded extracts

set {0.006ng), all other minor contributor HPD LR estimates
exceeded 100,000. A few general trends were also apparent from
the three-person mixture plots. As expected, the HPD LRs were
overall more variable than was observed with the two-person
mixtures, and the values generally decreased with decreasing DNA
template amounts. But, within three broad template categories
representing all minor contributor DNA amounts greater than
0.05ng (colored in red, blue and purple in Fig. 5), the minor
contributor HPD LRs increased as the gap between the major to
minor contributor input increase. At template amounts below
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A) Two-person Mixtures
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B) Three-person Mixtures
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Fig.5. Range of minor contributor HPD LRs. Box and whisker representation of the HPD LR estimates for known minor contributors to two-person (panel A) and three-person
(panel B) mixtures considering DNA input of the minor contributor, major:minor contributor ratio, and (in the case of the two-person mixtures) DNA degradation of one or

both contributor extracts by ultraviolet irradiation. .
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0.05 ng, most minor contributor comparisons resulted in HPD LR
estimates indicating some support for H;, but approximately 25%
produced values less than 1.

There were two notable exceptions to the general conclusions
from the sensitivity and specificity testing of STRmix™:

(1) Two non-contributors provided HPD LRs of 9 and 980 for a
single 1:10 mixture (Fig. S8, panel A) developed from two DNA
extracts that were each artificially degraded by ultraviolet
irradiation. The mixture had a minor contribution of 100 pg. At
several loci, the mixture displayed complete dropout of all alleles
or all minor contributor alleles. Comparison of the known minor
contributor to the mixture resulted in a low HPD LR estimate of
320, correctly in support H;. For the minor contributor (APH=79
rfu), STRmix™ deconvolution assigned only 5 alleles with >99%
probability. Both non-contributor profiles included all 5 of these
alleles, as well as several undetectable alleles shared with the
major contributor. The absence of all other undetected alleles could
be reasonably attributed to dropout, As for alleles that could not be
accounted for by the non-contributors, for one of the comparisons
(HPD LR=980), a single additional peak was modeled as stutter
(9%); for the other comparison (HPD LR=9), two additional peaks
were modeled as stutter (9% and 15%). Accordingly, the probabi-
listic interpretation relative to these non-contributors makes

intuitive sense given the mixture results. Under a binary
interpretation approach, there is no basis for exclusion of these
non-contributors; however, because all minor contributor alleles
are below a stochastic threshold (200rfu), the mixture is not
suitable for statistical analysis (i.e., CPI calculation) and would be
reported as inconclusive.

A replicate amplification of the same 1:10 mixture was
considered with respect to the non-contributor comparison that
had produced the HPD LR=980 result. Deconvolution of the
duplicate amplification (Fig. S8, panel B) assigned to the minor
contributor with >99% probability an allele (not detected in the
first amplification) that was inconsistent with the non-contributor,
resulting in a HPD LR=0. When the PCR replicates were analyzed
simultaneously in STRmix™, the non-contributor was also
unambiguously excluded as a potential contributor to the mixture
(HPD LR=0). Moreover, the concurrent consideration of both
mixed profiles with the true minor contributor as the hypothesized
person of interest resulted in a HPD LR higher by 2.5 orders of
magnitude than when either STR profile was interpreted alone. As
a point of reference, repeated STRmix™ analyses of the same
mixed profile are generally expected to produce LRs with a
maximum of a 10-fold (one order of magnitude) difference
between the highest and lowest values [30]. Thus, LR differences
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Fig. 6. HPD LRs resulting from interpretation of single STR profiles versus PCR replicates. Two-person and three-person mixtures were interpreted with respect to known
minor contributors and non-contributors to assess the impact of considering PCR replicates. The data are plotted on a log10 scale, with HPD LR=0 plotted as —5. The dashed
line represents where the HPD LRs for the single profile (x-axis) and PCR replicates (y-axis) interpretations are equal, and the blue and green-shaded areas represent an
increase or decrease (respectively) of one or more orders of magnitude. Only non-contributor propositions that produced any degree of support for inclusion (HPD LR> 1) for
the single mixed profile interpretations were examined, thus all non-contributor data points (red triangles) are found to the right of the y-axis. The pink-shaded area
highlights the non-contributor PCR replicates analyses that produced HPD LRs < 1 (support for exclusion).
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exceeding one order of magnitude are greater than what would be
expected due to variations in the statistical sampling process
(MCMC) alone.

(2) One known minor contributor to a 2:1:1 mixture, with
template input of 167 pg, resulted in a reciprocal HPD LR of 36 in
support of H, The STRmix™ deconvolution indicated a 1:1:1
contributor ratio, which may in part have been due to incomplete
resolution of a shared THO1 allele 9.3 and the minor contributor's
THO1 allele 10, The inferred contributor ratio of 1:1:1 resulted in
low weights for genotype sets with allelic dropout. However, only
half of the minor contributor’s obligate alleles were detected, and
the APH for the contributor was 37 rfu. As a result, loci with allelic
dropout produced LRs <1, resulting in an overall HPD LR.that
incorrectly supported Ha.

The LRs from sensitivity and specificity testing in STRmix™
tend towards one as the information in the profile declines, usually
correlating with lower template amounts (Figs. 2 and 4 and S4
through S7). Where profiles exhibit stochastic effects and allele
dropout, particularly at very low template where few or no obligate
alleles for a given contributor are detected, the LR for false
contributors (as well as true contributors) tends to spread slightly
above and below one. Given probabilistic modeling within the
stochastic range, LRs >1 are expected for some non-contributors. in
validation testing, failure to demonstrate false support would

indicate that the system is either not functioning properly or has
not been queried with sufficiently challenging specimens. In fact, a
high LR for a simulated non-contributor may even result from a
high template single source profile, since simulation of a large
number of non-contributor genotypes will eventually produce one
that matches the profile. In general, however, the results
demonstrate the accuracy of support (ie, inclusionary or
exclusionary), with a much greater probability of excluding a true
contributor (6.1% of H,-true tests) than of including a non-
contributor (0.1% of H,-true tests).

3.3. Concurrent STRmix™ analysis of replicate amplification results

Analyses of duplicate amplifications of two and three-person
mixtures (N=56) yielded improvements in the LR results.
Considering known minor contributors across a broad range of
DNA template quantities and contributor ratios, 52% of concurrent
analyses of PCR replicates produced a HPD LR at least one order of
magnitude higher than when an amplification result was analyzed
singly, and approximately one third of the time the HPD LR
increased by two or more orders of magnitude (Fig. 6). Notably,
over a range of a HPD LRs from10 to 100 million for a single
amplification, with the addition of amplification replicate results,
the HPD LR was never reduced. In fact, 77% of HPD LRs increased by

2 172 1% 173 180
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175.05
172 174 176 18 160

wt Mixture B:
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Fig. 7. Typing results at the THO1 locus generating false exclusion results (LR=0) by STRmix™. An unresolved allele 10 (arrow) is apparent for the minor contributor to
Mixture A (the multi-locus electropherogram is provided as Fig. $9). Mixture B (Fig. S10) exhibits all alleles at THO1 for its two contributors, STRmix™ unambiguously
determined the major contributor genotype to be 7,9, but did not consider 9.3,9.3 as a possible minor contributor type. A LR =0 was returned for the known minor contributor,

93,93,
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more than one order of magnitude (on average by 2.8 orders of
magnitude). In addition, 33 non-contributor propositions that had
produced some degree of support for inclusion (HPD LR>1) were
reanalyzed with the addition of a duplicate amplification. In 61% of
these analyses, concurrent interpretation of the PCR replicates
resulted in a HPD LR less than 1 (Fig. 6). Overall, these data
demonstrate that the inclusion of more information in the form of
replicate amplifications tends to improve both sensitivity and
specificity. However, in practice, replicate amplifications (e.g., with
the same template amount) are not routinely performed.

3.3.1, False exclusions

In limited instances, STRmix™ returned readily recognizable
false exclusions (LR=0) for known contributors. These had two
distinct causes: profile quality and mixture deconvolution issues.
False exclusions due to poor profile quality included (a) saturated
peaks and (b) electrophoretic failure to resolve major and minor
alleles differing in size by 1 bp.

In the present study, false exclusion occasionally occurred in
saturated three and four-person mixtures for which the major
contribution was 2ng or more, Additionally, some H,-true
propositions for saturated profiles resulted in inconclusive results
(HPD LRs=1). While some saturated peaks may have a nominal
effect on LRs and weights in some STRmix™ analyses, it is
advisable to reprocess the sample (e.g., inject for less time for
capillary electrophoresis), given that no useful quantitative
information is associated with such peaks and there is a greater
potential for elevated stutter, electrophoretic artifacts resulting
from amplification of high template amounts and false exclusion
with saturated data.

False exclusions also occurred in a three-person mixture
presenting with a 3:1:1 ratio. STRmix™ unambiguously deter-
mined the major contributor genotype at all loci except for THO1,
which exhibited three alleles (Fig. 7, Mixture A; the electrophero-
gram is provided as Fig. S9). At this locus the genotypes of the three
known contributors are 7,9 (major contributor), 9.3,9.3 and 9.3,10.
On inspection of the electropherogram (Fig. 7), the 10 allele
corresponding to the third contributor appears to have been
unresolved from the 9.3 during capillary electrophoresis (the 10
allele was thus not ‘called’ by GeneMapper ID-X and therefore not
subsequently analyzed by STRmix™), Based on the modeling of
template and degradation for the third contributor, STRmix™ did
not consider dropout at THO1 (of, say, the unresolved allele 10), and

Table 4

therefore a LR=0 was returned for this locus only (Table 4, Mixture
A). As a general indicator of a potential problem with the data/
analysis, review of the STRmix™ output data showed intuitively
correct results for all loci except for THO1. Five repeat reinterpre-
tations of the profile with the unresolved allele returned LR=0or a
very low LR providing incorrect H, support (approximately 107),
as expected given the flawed input data. A replicate amplification
of the sample resolved the minor allele 10 and provided a LR
of2 x 10°, If the unresolved/uncalled peak were not evident in the
mixture, given the height of the peaks at this locus, manual
interpretation of the profile would also have resulted in an
exclusion. However, given the apparent presence of the unresolved
allele and the evident interpretation issue, re-injection or
potentially re-amplification of the sample is warranted to improve
the input data for -STRmix™ analysis. Should such repeat
processing not provide conclusive typing results, setting the
software to ignore a problematic locus is appropriate and, in this
instance, correctly produced a non-zero total LR as expected based
on truth data. With respect to these false exclusions occurring with
saturated data and unresolved alleles, STRmix™ performed as
expected given the profile quality.

Four instances of a mixture deconvolution problem also
presented as an exclusion of a known contributor due to a LR=0
at a single locus (THO1), with the remaining loci producing non-
zero LRs (Table 4, Mixture B). All four instances occurred with
comparison of the minor contributor to mixtures constructed from
the same two individuals exhibiting the types 7.9 (major
contributor) and 9.3,9.3 {minor contributor) (Fig. 7, Mixture B;
the electropherogram is provided as Fig. $10). STRmix™ unam-
biguously assigned the major contributor type at THO1 (weighted
1.000). However, a weight was not assigned to a genotype
combination that, based on the electropherogram, one would
reasonably consider a possible minor contributor type: 9.3,9.3.
Review of STRmix™ results file in each of these instances indicated
that the only genotypes considered were 9,9.3 (weighted 0.919),
7.9.3 (weighted 0.080) and Q9.3 (weighted 0.001), where Q
represents an undetected allele. LR=0 was therefore returned for
the known minor contributor. This phenomenon is an infrequent
result of the statistical sampling process (MCMC) and occurs when
the probability space that includes the true genotype is not
sampled. To investigate the LR=0 result, the four mixtures were
each deconvoluted ten or more times in STRmix™, and most of the

‘time the repeated analysis (which proceeded from a different

LR results for two different mixtures, A and B, that incorrectly returned exclusionary results (underlined) at a single locus.

Mixture A Mixture A omit THO1 Mixture A replicate amplification Mixture B Mixture B replicate STRmix™

LRs for individual loci
D8S1179 2,90 294 2n 9.93 9.88
D21511 2512 2176 17.65 79.87 77.69
D75820 341 351 3.01 32.88 3141
CSF1PO 291 3.04 375 4.71 4.52
D351358 196 199 6.22 9.63 9.63
THO1 0.00 - 11.66 0.00 1.69
D135317 345 452 3.93 545 9.42
D16S539 2.81 248 1.57 277 287
D251338 7.96 8.93 7.55 5.31 484
D195433 179 1.67 152 10.79 9.93
vWA 251 ' 2.41 236 2,62 2,65
TPOX 216 198 1.85 0.83 0.81
D18S51 30.25 2783 19.92 292 3.01
D55818 214 216 231 2088 20.59
FGA 6.25 541 4,69 11.65 1117

LRs for the multi-locus profile
LR total 4] 3.55E+08 2.03E+09 0 3.44E+12
Factor of NI LR 0 1.85E+08 9.68E+08 0 1.72E+12
HPD LR 0 3.72E+07 3.20E+08 0 8.10E+11
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random starting seed for the MCMC) produced a non-zero LR for
the affected locus. In fact, the LR=0 result could sometimes only be
replicated by setting the MCMC starting seed to the value that
produced the initial false exclusion. Repeated deconvolutions of
the profiles were also performed with an increased number of
- MCMC accepts (up to 5 million) and with a larger random walk
standard deviation (RWSD; up te 0.02), but atleast one LR=0 result
was observed even with these changes to the STRmix™
parameters (data not shown). The false exclusion is likely due to
a larger than expected variability in peak heights at this locus that
was atypical for the dataset used in establishment of variance
parameters, In casework one should attempt to remedy any issue
stemming from amplification or electrophoretic phenomena
rather than change the interpretation parameters in STRmix™,
However, these four particular instances of erroneous STRmix™
results stemmed from the software, not the typing results. Such
inconsistency of the electropherogram and STRmix™ results
indicates a need for repeating the STRmix™ analysis.

In the examples presented, a weighting of >0.99 was returned
for nearly all but the problematic locus. All other loci returning
LRs>1 while a single locus has a LR=0 result is a clear indicator
that careful review of the typing results and the genotype weights
for all loci is merited. Consideration by a skilled analyst of the DNA
typing results and all STRmix™ results data is critical in identifying
the source of error in the analysis. In all such instances in our study,
both the presence of a potential false exclusion and its cause were
readily identified by examination of the profile and the STRmix™
results output, with results appearing inconsistent with scientific
expectations based on manual review and comparison of the
profiles and, in these instances from validation studies, truth data,

3.4. Alternative propositions

Although reference samples for more than one individual may
be provided to a laboratory for comparison to evidentiary profiles,
the relevant question in the typical legal context relates to a single
individual (e.g., complainant, defendant 1 or defendant 2).
Nonetheless, STRmix™ analyses were conducted to assess the
effects of testing known contributors concurrently, as well as
contributors and non-contributors. When two known contributors
were assessed concurrently (ie. for a three-person mixture,
Hy=contributor 1+contributor 2+unknown contributor; H,=
three unknown contributors), the LR was additive, approximating
the combined LRs of testing the contributors individually.
However, when one of the two contributors thus assessed was a
non-contributor (i.e., for a three-person mixture, H, = contributor +
non-contributor + unknown contributor; H, = three unknown con-
tributors), different outcomes were observed. When a non-
contributor tested individually returned a LR of zero, the LR for
concurrent testing with a known contributor was zero. This result
is a correct assessment for both individuals considered together
but does not appropriately represent the presence of the known
contributor in the mixture. When the non-contributor tested
singly was not excluded but returned support for H (0 <LR< 1),
the results of concurrent testing with a known contributor varied:
(a) LR of zero, or (b) an additive LR > 1. The latter indicates incorrect
support for Hy given that one of the individuals tested concurrently
is a non-contributor.

Where appropriate, mixture interpretation can be conditioned
on the assumption that the DNA of a given individual (e.g., donor of
a vaginal swab) is present in the sample. The use of such
information has been shown to increase the LR for Hj-true
propositions and reduce the LR for Hp-true propositions [11]. A
total of 94 two, three, four and five-person mixtures that had been
analyzed in STRmix™ with no contributor assumed were
reinterpreted in STRmix™ to test the effect of conditioning the

analysis on a known contributor to the mixture (Fig. $11). For all
analyses, a known contributor to the mixture was tested as a
person of interest (H;-true). In general, conditioning the analysis
improved the LR when the DNA input amounts for the assumed
contributor and the person of interest were similar [e.g., the minor
contribution to the mixture is at least 50% (red data points) as
compared to at most 20% (green data points). As an exception,
conditioning the analysis of 1:1 mixtures produced no substantial
difference in LR when the DNA of one of two contributors was
degraded, since the differences in peak heights due to degradation
enabled resolution of the two genotypes. In addition, LRs increased
when both the assumed contributor and person of interest were
minor contributors, with the magnitude of the effect decreasing as
the number of individuals in the mixture increased. For example,
for three-person mixtures with a minor person of interest, the LR
increased by 4.2 orders of magnitude upon conditioning on
another minor contributor, but for four-person mixtures, the
benefit was reduced to 2.6 orders of magnitude. By contrast, if the
person of interest was a minor contributor, the LR rarely improved
when the analysis was conditioned on a definitive major
contributor, and vice versa (green data points). This result is
intuitive: conditioning on a clear major contributor, for example,
does not typically improve resolution of the minor component(s).

For the five-person mixtures, the same general trends in the
data were most apparent when “trace” contributors (in this
instance, defined as individuals with DNA inputs of 0.18 ng or less
who also represented less than 10% of the total DNA load for the
mixture) were distinguished from non-trace contributors, In these
mixtures, LRs increased to the greatest degree and most
consistently when the assumed contributor and person of interest
were both (a) trace contributors, or (b) non-trace contributors.
Conditioned analyses of 1:1:1:1:1 mixtures, as well as analyses
conditioned on a trace contributor in which a non-trace
conditioner was the person of interest (or vice versa), increased
the LR by less than one order of magnitude on average.

3.5. Incorrect number of contributors

Within STRmix™ the number of contributors to a DNA profile
must be assigned prior to analysis. The true number of contributors
to an evidence profile, however, is unknown. Uncertainty in
determination of the number of contributors may increase due to
artifacts, stutter percentages that exceed expectation, allele
dropout and, particularly with higher contributor numbers, allele
sharing. Given a contributor number of N and the assumption of an
additional contributor (N+1), STRmix™ adds the additional
(unseen) contributor at trace levels which, when considered with
the true trace contributor, diffuses the genotype weights and can
either return a false exclusion or lower the LR of a true contributor
[{27.35). The LR of the major contributor is not appreciably different
when N+ 1 contributors are assigned.

In the present study, the effect on the LR of assuming an
incorrect number of contributors was tested by both increasing
(N+1)and decreasing (N-1) the number. For the N+ 1 tests, 27 total
one, two and three-person profiles were interpreted as originating
from two, three and four individuals, respectively. The LR was
calculated using the Database Search function for both true
contributors and 200 non-contributors, which were converted to
HPD LR estimates as previously described.

For true contributors (H;-true), the majority of HPD LRs under
the assumptions of N and N+ 1 contributors were similar (within
one order of magnitude); for 13% of the analyses, the HPD LRs
decreased by more than one order of magnitude (Fig. $12). With
regard to non-contributors (H,-true), 89.6% were excluded (HPD
LR=0) under assumption of the correct number of contributors,
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and the remainder (excepting the false H;-support instances noted
above) returned HPD LRs < 1. Under the incorrect assumption of an
additional contributor, only 5.3% of non-contributors were
excluded outright, though overall 94.3% returned HPD LRs<1.;
4,0% of such analyses were inconclusive (HPD LR=1), and only 1.7%
of Hp-true tests analyzed with N+ 1 contributors returned incorrect
support for Hy. The vast majority (91.9%) of results with incorrect
H, were HPD LRs < 10; only one result out of 5,716 N+1 analyses
was >100 (HPD LR=126).

STRmix™ generates a LR=0 if contributor number is under-
estimated since any “extra” allele cannot be accounted for under
the assigned number of contributors. Therefore, as a means of
examining the impact of assuming too few contributors without
returning an exclusion outright, three mixtures were artificially
created from a two-person mixture (1:5 contributor ratio) by
adding an additional contributor without adding any new
(exclusionary) alleles. The “third” contributor was constructed
as if a child of the two true contributors, sharing alleles at all loci,
by increasing the rfu values of the alleles by approximately 50 rfu,
100 rfu or 200 rfu per mixture. Each artificially constructed three-
person profile was analyzed as a two-person mixture and
compared with the true contributors and 200 non-contributors.
The resulting LRs for the major or minor contributor were not

affected by the addition of a third contributor at any of the three
average peak heights. All non-contributors resulted in exclusions
(LR=0)

3.6. Manual and probabilistic interpretation of the sarne mixed profiles

To assess general consistency between manual interpretation
and STRmix™ analysis, a set of mixtures prepared over a range of
contributor ratios and DNA template amounts was analyzed using
both methods. Where a person of interest was not excluded as a
possible contributor to a mixture based on manual interpretation,
STRmix™ analysis demonstrated support for H;, with HPD LRs
ranging from 8.7 x 10% to 1.8 x 10'® (Table S3). Where loci or entire
profiles were manually disqualified for CPI calculation following
application of a stochastic threshold of 200 rfu, STRmix™ results
varied: HPD LRs for true contributors ranged from 2,200 to 250
billion in support of H; and for non-contributors were 0
(exclusion), 850 trillion in support of H, and 2 in support of Hi.
The latter result occurred in a three-person mixture noted above as
providing incorrect support for Hy.

A comparative examination of mixtures from 30 authentic
forensic specimens was also performed (Fig. 8). For reference
samples included by manual interpretation as potential major

30
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1) R —
.30 S ST,
Excluded No Comparison/  Cannot Be Excluded Major Contributor
{n=53) Inconclusive (n=17) {n=10)
(n=14)
Reported Result

Fig. 8, Manual versus probabilistic interpretation of mixed profiles from evidentiary specimens. Box and whisker representation of the HPD LRs calculated for 94 total
reference genotype comparisons to Identifiler® Plus profiles developed from 30 authentic forensic specimens from adjudicated FBI cases. The manual interpretation results
(x-axis) were categorized based on how the person of interest comparison was reported: excluded as a contributor to the DNA evidence, inconclusive (did not meet standards
for match comparison), cannot be excluded (potential contributor to the mixed DNA profile reported with a CPI statistic), or major contributor (deduced single-source profile
reported with a RMP statistic). 99.0% lower-bound HPD LRs (y-axis) are plotted using a log scale, with HPD LR =0 plotted as —30. All 30 evidentiary profiles indicated mixtures

of DNA from two or more individuals,
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contributors and previously reported with a RMP statistic, the
STRmix™ results produced HPD LRs in excess of1 x 106, Consid-
ering 53 manual exclusions: in 51 instances the probabilistic
interpretation also supported exclusion, in one instance the HPD LR
was 1 (denoting an inconclusive result), and in the last instance the
HPD LR was 410 in support of inclusion. In this last instance, the
probabilistic interpretation was conducted assuming four con-
tributors, and STRmix™ indicated the reference as one of three
trace contributors, comprising just 5% of the DNA load. Examina-
tion of the evidence electropherogram and reference genotype
(Fig. S13) revealed a peak disqualified as stutter in the manual
interpretation that was modeled by STRmix™ as an allele for a
trace contributor that exhibited dropout at muitiple loci.

Among the 94 total hypotheses tested for the evidentiary
specimens, reference samples were manually designated as
potential contributors (“cannot be excluded”) in 17 instances
(involving ten distinct mixtures; Table 5), These comparisons were
previously reported with CP! statistics, which ranged from a low of
1in'1 to a high of 1 in 30,000. Where the statistical estimate was 1
in 1, the percentage of the population that would be included as
possible contributors (75%-98%) was also reported (Table 5). For
STRmix™ analyses of these ten mixtures, nine were analyzed as
originating from four persons and one was analyzed as originating
from three persons. For all potential contributors previously
reported with a CPl of 1 in 2 or greater, the STRmix™ results
supported inclusion, with HPD LRs ranging from 2,600 to 16
sextillion. Considering the six reference comparisons for which the
reported CPl was 1 in 1, the probabilistic interpretations produced
HPD LRs less than 1 (denoting support for Hy) in four instances. This
is not a surprising result given the complexity of the mixtures and

Table 5

T.R. Moretti et al./Forensic Science International: Genetics 29 (2017) 126-144

the weak statistical support calculated for the manual inclusions.
For two of these four instances, both involving the same mixture
(€1Q10, compared to reference samples C1K10 and C1K18), the
total and HPD LR values from the STRmix™ output indicated a far
larger HPD interval than is typical (Table 5). Given the approximate
4:4:1:1 contributor ratio for this mixture, it seems likely that the
similarities in DNA loads may have resulted in MCMC uncertainty,
creating the wide HPD interval, which in turn accounts for the
strength of the support for H,. The remaining two CPl results of 1 in
1 provided support for H,.

For the evidentiary mixtures that were deemed inconclusive by
manual interpretation, STRmix™ produced wide-ranging HPD LRs,
as with the prepared mixtures, from 1 to greater than 1 x 108 in
support of Hy (Fig. 8). These results indicate that a fully continuous
probabilistic method enabling usage of more profile information
and modeling features in STRmix™ yields more refined con-
clusions for some mixed DNA profiles as compared to a binary
interpretation method,

4. Conclusions

The internal validation studies described herein involved the
examination of more than 300 autosomal STR profiles, derived
from one to five contributors and representing a wide range of
contributor ratios and DNA template amounts. The probabilistic
interpretations using laboratory-specific parameters totaled more
than 800 known contributor propositions, nearly 60,000 non-
contributor tests, and nearly 100 reference sample comparisons to
mixed profiles developed from authentic forensic specimens.
Overall, the study results demonstrate that STRmix™ software

Manual interpretation statistics compared to STRmix™ results for casework comparisons reported as “cannot be excluded”,

Manual Interpretation

STRmix Interpretation

Forensic Sample Reference Sample  Reported Percentage of Population Assigned Number of HPD LRor 1/  Orders of magnitude difference between
Identifier Identifier cPl Included Contributors HPD LR* total LR and HPD LR
C1Q10 CiK10 lin1 75% 4 210,000° 5.1
CiK14 1lin1 75% 4 85 million 2.8
C1K18 1lin1 75% 4 2,000* 82
C1Q14 C1K6 1in4 nfa 4 8.1 billion 0.7
C1Q15 C1K6 1in 18 nja 4 27 million 0.6
C1K10 1in18 nfa 4 51 billion 0.8
CiK14 1in 18 nja 4 4.4 billion 05
c1Q19 C1K14 1in 33 nfa 3 1.1 billion 04
C1Q22 C1K14 1in1 98% 4 2* 0.7
€1Q23 CiK14 tin1 98% 4 370 trillion 0.8
C1K18 tin1 98% 4 2* 0.6
C1Q26 C1K6 1in9 nja 4 140 million 0.7
Ci1K10 1in9 nfa 4 52 billion 0.6
C1Q39 C1K14 1in2 46% 4 1.6 triltion 1.0
C1Q40 CiK14 1in2 64% 4 16 sextillion 0.8
3Q2 C3K10 1in nfa 4 2,600 0.3
30,000
C3K11 1in nfa 4 230 trillion 04
30,000

Combined probabilities of inclusion (CPIs), population percentages and LRs are based on U.S. Caucasian or Navajo population sample allele frequencies and theta values of 0.01
or 0.03 (respectively), as appropriate based on the case details. Population percentages were included in the FBI Laboratory Report of Examination for all reported populations
if the CPI statistic was 1 in 1 for any of the reported populations.

" Asterisks denote conversion of HPD LRs that were less than 1 to a positive integer (1/HPD LR) to convey the degree of support for the H, hypothesis on the same scale as HPD
LRs >1 results. All HPD LR and 1/HPD LR values were truncated to two significant figures.

nfa=not applicable (percentage of population included is only provided for “1 in 1" CPis)
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performed as expected. With very few exceptions, genotype
weights were intuitively correct, and the statistical results were
consistent with scientific expectations, Across multiple studies, the
data showed that as the informative content of a profile increased
such as with higher DNA template amounts, greater disparity in
conftributor ratios, and simultaneous consideration of PCR
replicates, LRs increased for true contributors and decreased for
known non-contributors.

When a 99.0% one-sided lower-bound HPD LR value was used to
assess the STRmix™ results for the two, three, four and five-person
prepared mixtures, the software proved to be appropriately
sensitive and specific. Across more than 60,000 tests, 93.4% of
true contributors produced HPD LRs supporting inclusion, and
greater than 99.9% of non-contributors resulted in HPD LRs
supporting exclusion. Specificity with five-person mixtures was
further increased by conditioning the interpretation on a known
contributor. In all cases where non-contributor comparisons
generated HPD LRs > 1, the results were consistent with scientific
expectations given the mixture quality and complexity (e.g.,
degradation, allelic dropout) and the number of contributors. A few
exclusionary results (LR=0) for known contributors occurred due
to poor profile quality (e.g., inadequate capillary electrophoresis
resolution) and when MCMC sampling failed to identify the true
genotype combination for a single locus. In all instances, the cause
of the unexpected results could be deduced upon review of the
STRmix™ output files in relation to the mixture electropherogram
and resolved by a repeat STRmix™ analysis with or without
modifications (according to error type). Taken together, the results
of the various studies (a) aptly demonstrate the reliability of the
STRmix™ software in terms of sensitivity and specificity when
laboratory-specific parameters are employed for analyses and (b)
underscore the importance of analyst review of both the DNA
typing and probabilistic genotyping results,

These studies establish that STRmix™ version 2.3.06 is fit for
purpose for the interpretation and statistical assessment of single
source profiles and mixtures originating from two, three, four and
five individuals. To convey the statistical weight and aid
comprehension of the reported statistical results, which in this
study ranged from LRs of 0 to approximately 10%7, the LR may be
accompanied by a qualitative description of the degree of support
for the Hy or H; hypothesis{10]. The FBI Laboratory reports the HPD
LR for Identifiler™ Plus typing results with a verbal expression of
evidential strength as recommended by the European Network of
Forensic Science Institutes (ENFSI) [36] and founded by the
Association of Forensic Science Providers [37]; HPD LRs of 0 are
reported as exclusions, and HPD LRs of 1 are reported as
uninformative.

The implementation of a fully continuous probabilistic geno-
typing system on December 1, 2015 represents a major step
forward in the interpretation of autosomal STR data at the FBI
Laboratory. As evidenced by the comparative examinations of
prepared mixtures and evidentiary profiles from prior FBI cases,
the conclusions derived from the results of probabilistic genotyp-
ing can be expected to align with properly applied historical
methods. The probabilistic approach used by STRmix™ greatly
increases the information that can be used to deconvolute
mixtures and estimate evidentiary weight, showing distinct
advantages with mixtures with three or more individuals and
low-level contributors. Our analysis of findings supports that
STRmix™ reliably applies suitable biological modeling and
statistical methods, is sufficiently robust for usage with foren-
sic-type specimens and, as a probabilistic genotyping system,
represents a vital advancement in the field of human identification
testing,
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We report a large compilation of the internal validations of the probabilistic genotyping software STRmix™.
Thirty one laboratories contributed data resulting in 2825 mixtures comprising three to six donors and a wide
range of multiplex, equipment, mixture proportions and templates. Previously reported trends in the LR were
confirmed including less discriminatory LRs occurring both for donors and non-donors at low template (for the
donor in question) and at high contributor number. We were unable to isolate an effect of allelic sharing. Any
apparent effect appears to be largely confounded with increased contributor number.

1. Introduction

In 2016, the President's Council of Advisors on Science and
Technology (PCAST) issued a report [1] and subsequently an addendum
[2]. This report discussed a number of forensic disciplines. Included
amongst these was the interpretation of complex DNA mixtures, PCAST
defined a complex mixture as any profile with three or more donors.
The report noted perceived limits to the proof of validity of the use of
probabilistic genotyping (PG) in some situations as of September 2016.
In particular they highlighted gaps regarding high ratio and high con-
tributor number mixtures. PCAST considered validity proven for mix-
tures containing “three contributors where the person of interest comprises
at least 20% of the sample.” [2]. They noted that the “few studies that have
explored 4- or 5-person mixtures often involve mixtures that are derived
from only a few sets of people (in some cases, only one).” [2]. They call for
the expansion of empirical studies, testing the validity and reliability of
PG methods across a broader relevant range of profile types.

PCAST limited themselves for proof of validity to empirical studies
published in the peer reviewed literature. There are a number of pub-
lished reports describing the validation of various probabilistic geno-
typing software by the developers. These include the New York City
Office of Chief Medical Examiner’s FST Tool [3], TrueAllele” [4], and
STRmix™ [5]. More recently the validation of GenoProof Mixture 3 [6]
and Kongoh [7] has been reported.

PCAST also perceived there was a gap in “the need for clarity about the
scientific standards for the vadlidity and reliability of forensic methods.” [11.
The Scientific Working Group on DNA Analysis Methods (SWGDAM) [8]
and International Society for Forensic Genetics (ISFG) [9] have both
published comprehensive guidelines that inform how to test a probabil-
istic genotyping system to ensure reliability and validity of results.

At the time of the PCAST report there was a considerable number of
empirical studies already undertaken by various laboratories who had
implemented, or were in the process of implementing, STRmix™. These
followed the SWGDAM guidelines [10,11]. They were not published in
the peer reviewed literature largely because it is the policy of many
journals not to publish such material. Some of these studies are already
in the public domain on websites (see for example [12,13]).

Since the appearance of the PCAST report, the Federal Bureau of
Investigation Laboratory, Quantico, has published its STRmix™ internal
validation in the peer reviewed literature [14], also in accordance with
the SWGDAM guidelines. This publication reports 277 mixtures with
two to five donors and a range of mixture ratios and templates.

In this work we report a further study of 2825 mixtures compiled
from 31 laboratories (including multi laboratory systems) who are
using STRmix™ in casework (28/31) or currently validating STRmix™
for future use in casework (3/31). Mixtures of three, four, five, and six
contributors were specifically targeted in order to address the criticisms
of PCAST.

We aim to specifically address the deficiencies described by PCAST
in their report by addressing the following points:

(1) How well does the method perform as a function of the number
of contributors to the mixture? How well does it perform when the
number of contributors to the mixture is unknown?

(2) How does the method perform as a function of the number of
alleles shared among individuals in the mixture? Relatedly, how does it
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perform when the mixtures include related individuals?

(3) How well does the method perform —~ and how does accuracy
degrade — as a function of the absolute and relative amounts of DNA
from the various contributors?

We address point 1 in experiment 1 by analysing all submitted
mixtures assuming the apparent number of contributors. The apparent
number of contributors (N) was determined blind by the submitting
laboratory following their own standard operating procedures. Note
that this resulted in all six person mixtures being analysed as assuming
less than six. Additionally, we have assumed N + 1 for a subset of the
data within experiment 2. Point 2 we address by interrogating the data
in experiment 1 with respect to the amount of allelic sharing. Point 3
we address by conducting H, and H; true tests on mixtures in experi-
ment 1. :

In this work the developers of STRmix™ did not generate or choose
the data that was analysed by individual (non-developing) laboratories
and they have not censored any data from the results. This adheres to
the call by PCAST for work to be carried out in conjunction between
developers and non-developing organisations.

There is a fourth point to the list in the PCAST report:

(4) Under what circumstances — and why — does the method produce
results (random inclusion probabilities) that differ substantially from
those produced by other methods?

We do not address point (4) within this paper, however work is
ongoing to address it across a number of continuous and semi-con-
tinuous platforms.

2. Methods
2.1. Data submission

Participating laboratories submitted ground truth known profiles
originating from three to six contributors that had previously been in-
terpreted as part of their STRmix™ internal validation studies. Profiles
were submitted as analysed data in the form of text or Excel files. In
addition, laboratories provided reference profiles for the known con-
tributors, their validated laboratory specific settings, and the apparent
number of contributors to each profile. The apparent number of con-
tributors was determined by the submitting laboratories following their
own standard operating procedures. The apparent number of con-
tributors was used as the true number of contributors to a crime profile
is never known.

2.1.1. Data description

Apparent three, four and five person mixtures were interpreted by
staff at ESR (New Zealand) using STRmix™ V2.5.02. No apparent single
source or two person mixtures were interpreted as PCAST, perhaps er-
roneously, decreed foundational validity to be already established for
these [1]. In total there were 2825 mixtures interpreted from 31 different
laboratories generated using eight different STR multiplexes and analysed
on two different types of capillary electrophoresis (CE) instruments.

The STRmix™ settings used for the interpretation were those de-
termined by the contributing laboratory. These included per allele
stutter ratios (back and forward, where determined), allele and stutter
peak height variance distributions, analytical thresholds, saturation,
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and drop-in parameters. For each interpretation, eight MCMC chains of
100,000 burn-in accepts and 50,000 post burn-in accepts were used.

The number of profiles submitted, multiplex, PCR cycle number, CE
instrument used, and number of mixtures interpreted for each partici-
pating laboratory are provided in Table 1. Note some laboratories
submitted profiles generated using more than one multiplex (kit) and
some were multi laboratory systems, submitting profiles from different
laboratories within the one system. Many of the laboratories undertook
dilution series to prepare mixtures for interpretation. These were ty-
pically made by taking DNA from a few donors, often staff members,
and mixing them in different combinations and ratios. PCAST noted
that “In human molecular genetics, an experimental validation of an
important diagnostic would typically involve hundreds of distinet
samples.” (PCAST pg 81). Each different combination of genotypes is a
unique contributor combination.

The number of the unique contributor combinations for each mix-
ture type is given in Table 1. For example, there were twelve combi-
nations of different contributors for the apparent three person mixtures
submitted by Lab 01. In total there were 25 apparent three person
mixtures from Lab 01, hence 12/25 in Table 1. For all laboratories,
there were 205 unique three contributor profiles, 132 unique four
contributor profiles, and 14 unique five contributor profiles. Within the
STRmix™ deconvolution, template is modelled per contributor [11].
The mode of the post burn-in proposals for template per contributor

Table 1

Forensic Science International: Genetics 34 (2018) 11-24

was used to calculate mixture proportion. The mixture proportions as
determined by STRmix™ (sorted by ascending proportion for con-
tributor 1, constrained as the ‘major’ contributor) are plotted for each
apparent N in Fig. 1. At least one contributor in 69.5% of the apparent
three person mixtures, 96.5% of the apparent four person mixtures and
all of the apparent five person mixtures contained less than 20% of the
sample.

PCAST calls for an investigation to be conducted into how a method
“performs as a function of the number of alleles shared among individuals in
the mixture”. In Fig. 2 we provide the distribution of allele sharing for
known contributors in the mixtures, broken down by the true number of
contributors to a mixture. Allele sharing (AS) is defined as the fraction
of alleles in the donors collectively that appear in two or more donor
genotypes. The upper tail (> 0.80 proportion AS) for the three and four
contributor mixtures are a known family group consisting of a mother,
father, and their two biological children that was investigated by one
participating laboratory.

2.2. Experiment 1

For each profile, likelihood ratios (LRs) were calculated for the true
donors and 10,000 false donors. The profiles of the 10,000 non-donors
were created by simulation using the FBI Caucasian allele frequencies
for each multiplex. All LRs were calculated using the Caucasian allele

A list of the contributing laboratories, multiplex (kit) used, PCR cycle number, and CE instrument. The total number of mixtures interpreted per laboratory are sorted by apparent number
minor proportion as determined by STRmix™ indicated.

of contributors with the number of unique contributor cc

i

fons and

Number of each mixture type
Unique contributor combinations/total (Minimum minor

contribution)
Lab Samples submitted (trueN) Kit Cycle Number CE Apparent 3p Appareat 4p Apparent 5p
101 N3=24,N;=23 Fusion 5C 28 3130 12/25(7%) 12/22(7%) -
102 N3 =19,Ny =24 Identifiler™ Plus 28 3500 4/21(6%) 3/22(6%) -
103 Nj =88,Ny=128,N; =48 GlobalFiler™ 29 3500 5/87(3%) 6/161(< 1%) 2/16(5%)
104 N3y=3,Ny4=3 NGM SElect™ 30 3130 1/3(10%) 1/3(6%) -
105 Nj=39,Ny=37 Fusion 6C 29 3130 5/50(3%) 4/26(< 1%) -
L06 Nj=28,Ns =69 Identifiler™ Plus 28 3130 4/67(28%) 2/30(12%) -
L07 Nj=29,N4=30 Identifiler™ Plus 28 3130 4/36(2%) 1/23(2%) -
LO8 Nj=19,Ns=20 Fusion 6C 29 3500 2/24(7%) 1/15(4%) -
L09 N;=28N;=8N5=6 Fusion 5C 30 3500 4/28 (1%) 2/8(2%) 1/6(6%)
Ny =22, Ny =22 Identifiler™ Plus 29 3500 1/22 (1%) 1/22 (2%) -
L10 N3 =29,N; =52,N5=12 GlobalFiler™ 28 3500 4/64 (3%) 4/29 (1%) -
L11 N3 =69,Ns =42 GlobalFiler™ 28 3500 2/69 (< 1%) 2/42 (1%) -
L12 Nz = 28,N, = 32 NGM SElect™ 29 3500 2/38 (5%) 1/22 (5%) -
L13 N3=3,Ny=3 NGM SElect™ 30 3130 1/3 (9%) 1/3 (3%) -
N3=3,N4s=3 PowerPlex” ESI17 Pro 30 3130 1/3 (13%) 1/3 (6%) -
L14 N3 =10,N4=13 PowerPlex” 16 HS 30 3130 2/16 (7%) 1/7 (5%) -
115 N3=26 PowerPlex” ESI17 Fast 30 3130 11/26 (2%) - -
N3 =28 PowerPlex" ESI17 Fast 30 3500 11/28 (2%) - -
L16 N3=29,Ns=11 Identififer™ Plus 28 3130 9/38 (4%) 1/2 (5%) -
L17 N3 =26,Ns=32 GlobalFiler™ 29 3500 2/32 (4%) 1/26 (1%) -
L18 Ni=97,Ns =46 Fusjon 5C 29 3130 7/108 (7%) 3/35 (2%) -
119 N;=28,N, =30 Identifiler™ Plus 29 3130 9/37 (3%) 15/21 (29) -
L20 N3 =22,Ng=23,Ns=12 GlobalFiler™ 29 3500 9/42 (< 1%) 4/13 (5%) 1/2 (1%)
L21 Ny =43,N; =39 Fusion 6C 29 3500 14/59 (4%) 9/23 (1%) -
L22 Nj=62,Ns = 65,N5 =11 GlobalFiler™ 29 3500 27/69 (3%) 25/64 (19%) 2/5 (7%)
E23 N3 =72,N, =64 Fusion 6C 29 3500 6/83 (1%) 4/53 (< 1%) -
N3 = 159, N, = 60 Identifiler™ Plus 28 3130 4/161 (1%) 3/58 (< 1%) -
L24 Nj=35N4=36 GlobalFiler™ 29 3500 4/37 (3%) 3/34 (2%) -
L25 Nj=20,Ny=24 GlobalFiler™ 29 3500 1/20 (5%) 1/24 (6%) -
126 N;=18,Ny=12 Identifiler™ Plus 28 3130 17/25 (6%) 3/5 -
(< 1%)
127 Ny =51,Ny =42 Identifiler™ Plus 28 3500 5/71 (3%) 2/22 (< 1%) -
128 Nj =12,N4 =77,N5=76,Ng = 65 Fusion 5C 29 3500 6/24 (3%) 7/151 (< 1%) 6/55 (< 1%)
129 N3 =052,N4=52 GlobalFiler™ 28 3500 2/53 (3%) 1/51 (1%) -
130 N3=31,N,=42 GlobalFiter™ 29 3500 4/42 (4%) 3/31 (< 1%)
131 Nj=63,Ngy=99,N;5 =17 GlobalFiter™ 29 3500 3/80 (1%) 4/85 (< 1%) 2/14 (< 1%)

TOTAL Number of each mixture type unique combinations/total

(minimum minor contribution)

205/1591 (< 1%) 132/1136 (< 1%)  14/98 (< 1%)

13
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Fig. 1. Mixture proportions as calculated by STRmix™ and
sorted by ascending proportion plotted by apparent N where
1a is apparent three, 1b apparent four and 1c apparent five N.
Plots are smoothed for improved readability.
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frequencies from the FBI expanded CODIS core set [15] and a theta
(Fst) of 0.01. The propositions considered were:

H,: the DNA originated from the person of interest (either true or false
donor) and N-1 unknown contributors

H,: the DNA originated from N unknown contributors

where N was the apparent number of contributors.

14

Average peak height (APH) was calculated for each contributor by
averaging the peak heights of the unmasked alleles (not shared between
contributors and not in back stutter positions of any other contributor
alleles). Alleles that had dropped out were assigned a height of half the
laboratory’s analytical threshold (AT).
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Fig. 2. Distribution of allele sharing (AS) for known contributors to mixtures, plotted by true N.

2.3. Experiment 2

For one laboratory the three and four contributor profiles were
analysed at both the apparent number of contributors (N) and one
greater (N + 1). For these mixtures, apparent N was the same as known
N. In practise, when analysed as N + 1 a non-existent contributor with
true mixture proportion 0 has been added to reflect this ambiguous
contributor being present at trace amounts. The mixture proportion for
this additional contributor was constrained to be low, but not ne-
cessarily zero, using the informed mixture proportion prior function in
STRmix™ [16]. The LRs for the true donors and 10,000 non-donors were
assigned as per Experiment 1,

3. Results
3.1. Data review

The summary statistics for each interpretation were reviewed prior
to review of the LR. These statistics included the Gelman-Rubin con-
vergence statistic, average logso(likelihood) of the post burn-in MCMC,
the average of the post burn-in allele variance parameter, and the
average of the post burn-in stutter variance parameter. These values can
be used as diagnostics of the interpretation, to check for adequate
MCMC convergence. They are designed to help assess a STRmix™ de-
convolution result. No profiles required reinterpretation based on the
review of the diagnostics.

The LRs were also reviewed as part of data quality checks. Large
inclusionary LRs (LR > > 1) for false contributors and exclusionary
LRs (LR < 1) for true contributors where the APH was relatively high
were investigated. For any given mixture, there is a chance that a given
false contributor will have sufficient matching alleles, by chance, to
give an LR > 1. Likelihood ratios for false contributors above 10,000
are provided in Table 2. Following Taylor et al. [17];

1) The average LR for false contributors should be about 1.
2) The probability of observing a likelihood ratio of x or larger from an
unrelated non-donor is no more than 1 in x.

15

These two statements fo rm the basis for assessing false contributor
tests. In an experiment on 10,000 false contributors we would expect
approximately one LR = 10,000, plausibly 10 above 1000 and 100
above 100. This work reports the comparison of approximately 20
million false contributors. The average LR for all false contributors is
approximately 0.12. The reason that this average is below one is be-
cause the genotypes that would lead to the highest LRs (and so con-
tribute significantly to the average) were not happened across in the
number of Hy true tests performed.

The fraction of allele sharing for the twenty highest false con-
tributors ranged from 0.61 to up to 0.98 of the alleles with the mixture
(Table 2).

False exclusions were observed for known contributors where the
apparent number of contributors was fewer than the ground truth

Table 2
Summary of large inclusionary LRs for false contributors and percentage of overlapping
alleles.

Number Kit Apparent N KnownN LR Fraction of
allele sharing
1 GlobalFiler™ 3 3 505,924 0.81
2 Identifiler Plus™ 3 3 379,716  0.90
3 GlobalFiler™ 4 4 197,907 0.98
4 GlobalFiler™ 3 4 134,486 0.83
5 GlobalFiler™ 4 4 88,022 0.98
6 GlobalFiler™ 4 5 53,019 0.93
7 Fusion 6C 3 3 47,062 0.85
8 Fusion 5C 3 3 43,065 0.78
9 Fusion 5C 3 3 26,874 0.80
10 GlobalFiler™ 3 3 19,340 0.67
1 Fusifon 5C 3 3 17,582 0.61
12 Identifiler Plus™ 3 4 16,995 0.80
13 Fusion 5C 4 4 15,765 0.80
14 Identifiler Plus™ 3 3 14,446  0.87
15 NGM SElect™ 3 4 13,717 0.78
16 GlobalFijler™ 4 5 12,135 0.93
17 Fusion 5C 4 6 11,188 0.93
18 Fusion 5C 3 3 10,896 0.80
19 Fusion 5C 3 3 10,309 0.82
20 Identifiler Plus™ 3 3 10,298  0.80
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number of contributors. This was an expected result [18,19]. By way of
explanation we present an example of a true five contributor mixture
interpreted assuming four contributors. Fig. 3 is a stylised electro-
pherogram for one locus (SE33) with peaks and their corresponding
height. STRmix™ has modelled the minor peaks as stutters of the eight
alleles all above 800 rfu. Assuming four contributors and eight alleles,
each contributor must be heterozygous at this locus. One known con-
tributor who is homozygous at this locus (genotype 18,18) is therefore
excluded (LRsgas = 0) as a contributor under the assumption of four
contributors. A second individual (genotype 12,23.2) is a poor fit to the
profile assuming four contributors given the large peak imbalance for
these alleles resulting in a low weight and subsequent LR at this locus
(LRggss = 0.01).

False exclusions were also observed due to human error if, for ex-
ample, an incorrect reference profile was supplied. Human errors were
all corrected and the LRs reassigned. Another common reason for a false
exclusion was due to the lack of separation of alleles during capillary
electrophoresis. This occurred when peaks that differed by one base
pair (for example a 9.3/10 at THO1) were not separated sufficiently
during electrophoresis and one was subsequently not designated at
analysis [14]. In all identified occasions an allele corresponding with a
minor contributor was ‘hidden’ within the shoulder of an allele from a
major contributor. Affected loci were identified by reviewing the
electropherogram, and the locus was subsequently ignored during the
interpretation.

3.2, Results for experiment 1

Violin plots [20] showing the densities of log,o(LR) per APH range
are provided in Fig. 4 through 6 for apparent three, four and five
contributor mixtures, respectively. The percentage of non-contributors
giving LR = 0 is given at the bottom of each plot. The plots show the
general trends for both H, and Hjy results.

Plots of logyo(LR) versus APH for all mixtures are given in the
Supplementary material Figs. S1 through S9, plotted by apparent
number of contributors. These plots are also separated into H, true (LRs
for true donors) and Hy true results (LRs for 10,000 false donors) and H,

Peak | Height
12 892
14 116
15 1104
17 155
18 1899
22.2 186
232 | 2334 2300 5
24.2 147 2000 -
25.2 1386 1500
3
£
262 | 1508 1000
27.2 1410
500 -
302 89
o EFt= _ —_—
31.2 953 12 14 15 17 18

22,223.2 24.2 25.2 262 27.2
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and Hy true combined in order to help visualise the trends. In order to
facilitate comparison between plots the axis scales have been retained
for the same N. For the H, true results where apparent N differed from
the true N these results are indicated with a different plotting symbol.
LR results of 0 (exclusions) have been plotted at —40 on the log;q scale.
Normalisation of the CE platform (3130 versus 3500) had no effect on
the trends present in the data and is not shown.

The vertical line of points in Fig. S8 at 50 rfu where log;o(LR) > 1
are two siblings from a family study that included their biological father
and mother, Due the complete allele sharing with both parents the APH
for both siblings were calculated at half the AT, which is artificially low.

Fig. 4, Fig. 5 and Pig. 6 show the same trends as seen in previous
work [14,21], with the addition of information regarding the con-
sequence of over or underestimating the number of contributors. With
increased information present within the profile (either by greater
amounts of DNA, or by fewer contributors) the power to discriminate
contributors from non-contributors increases, and there is a divergence
of the LR from neutrality. Also consistent with previous findings [18],
the underestimation of the number of contributors tends to either have
little effect on the LR or will tend to exclude known contributors. This
occurs because genotype sets possessing unreal allele pairings are
forced to be given weight within the analysis. Interestingly this exclu-
sionary effect was reduced as mixture complexity increased to the point
that there were no exclusions produced from underestimating the
number of contributors in five person mixtures (Fig. S1). We surmise
that this is an effect of the increased allele sharing generally seen in
higher order mixtures (Fig. 2) meaning that there are increased op-
portunities for genotype sets to possess the genotypes of the known
contributors, even when their number is underestimated.

A plot of log,o(LR)s for profiles generated using Identifiler™ Plus 28
cycles analysed on a 3130 or 3500 are plotted in Figs. S10 and S11 for
the apparent three and four person mixtures, respectively
(Supplementary material). As a visual aid we have added smoothed
trend lines (LOWESS lines) for instrument type. These trend lines give a
rough idea of the relationship between log,¢(LR) and APH for different
cases. Any trend line is a compromise between smoothness and error.
We did not get materially different results when trying other trend lines

Fig. 3. Stylised locus electropherogram with tabu-
lated peak designations and their corresponding
heights for a true five person mixture interpreted
assuming four contributors.

302 31.2
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Fig. 4. Violin plot of log,o(LR) versus APH for apparent three contributor mixtures,
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Fig. 5. Violin plot of logyo(LR) versus APH for apparent four contributor mixtures,

available in the ggplot2 package [22].

Applied Biosystems report a three- to fourfold increase in rfu scale
with the 3500 models over the older Applied Biosystems 3100 and 3130
instruments [23]. This is evidenced by a general shift in the trend lines
for the 3500 to the right in Figs. $10 and S11. The lines converge at
high APH where the individual contributor profiles are likely fully re-
presented and trend to log)o(LR) = 0 as APH decreases.

Plots of log;o(LR)s for true contributors identified by kit type are
given in Pigs. S12 and S13 for the apparent three and four person
mixtures, respectively (Supplementary material). The LOWESS trend
lines for kit type are modelled. These plots indicate the performance of

17

the difference kits over APH for submitted profiles. As the profiles
analysed are not the same between the different kits they are not sui-
table for comparing performance of the different kits. However, they do
give an indication of general trends. As an example, comparing the
trend lines for Identifiler™ versus GlobalFiler™ mixtures, at higher per
contributor APH the log;o(LR)s are higher for GlobalFiler™ profiles,
most likely due to the additional loci within the GlobalFiler™ kit com-
pared with the Identifiler™ Plus kit. Log1o(LR) values for Identifiler™
profiles are generally higher at low contributor APH compared to
GlobalFiler™ profiles, however, This could be due to the increased
variability of the GlobalFiler™ profiles, all of which were analysed on
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Fig. 6. Violin plot of log;1o(LR) versus APH for apparent five contributor mixtures,

3500 instruments, in some cases with cycle numbers greater than 28
[24]. A comparison of the Fusion 5C and Fusion 6C trend lines illus-
trates the increase in discrimination achieved by adding the highly
polymorphic STR locus SE33 resulting in generally higher logyo(LR)s.

3.3. Results for experiment 2

The LRs for H, true under the assumption of N and N + 1 con-
tributors are presented in Fig. 7. Within Fig. 7 the size of the plotting
symbols is relative to the contributor’s proportion of the mixture. The
LRs for Hy true are summarised in Figs. 8 and 9.

The results shown in Fig. 7 demonstrate some findings that are
important for DNA mixture interpretation:

1. The general result was a decrease in the LR for true contributors
after the assumption of an additional contributor to the mixture. The

additional proposed contributor is interacting with the true con-
tributors, diffusing the genotype weights, hence lowering the LR.

. When a proposed person of interest aligns with the dominant com-
ponent in a mixed DNA profile, the support for their inclusion to a
mixture will not be markedly altered by an increase in the number of
contributors under which the DNA profile is analysed. This is con-
sistent with earlier findings [18].

. Even when only donating a minor component of the total DNA, the
change in LR produced by increasing the number of contributors is
still not extreme. In no instances has an increase in the number of
contributors seen an LR that strongly favours inclusion shift to one
that favours exclusion.

We also consider the effect of contributor overestimation on Hy true
tests. Fig. 8 shows the distribution of Hy true log;o(LR) values for three
person mixtures when considered as originating from three (N) or four

log(L.R) 3 donor mixtures treated as 4

T T T T

20 25
log(LR) 3 donor mixtures treated as 3

log(LR} 4 donor mixtures treated as 5

T J T T T

15
log(LR) 4 donor mixtures treated as 4

20

Fig. 7. The LRs for H, true for three and four person mixtures from one laboratory under the assumption of N and N + 1 contributors. The x = y line is shown. The size of the plotting

symbol represents the mixture proportion of the donor.

18
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Fig, 9. The LRs for H, true for four person mixtures from one laboratory under the as-
sumption of N and N + 1. 81% of four person mixtures analysed as four resulted in
LR = 0, represented by log;o(LR) = ~ 30.

LR vs APH by allele sharing for APH <= 5000
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(N + 1) contributors. Fig. 9 shows the results of the same analysis but
when considering four person mixtures as originating from either four
(N) or five (N + 1) individuals. The bulk of the distribution for the three
person mixtures analysed as three is at LR = 0 (90% of all LRs) re-
presented by log;o(LR) = — 30 in Fig. 8. In Fig. 9, 81% of four person
mixtures analysed as four resulted in LR = 0, again represented by
logw(LR) = - 30.

Figs. 8 and 9 show that, when analysed using the true number of
contributors, the instances of H, true comparisons that lead to outright
exclusions is greatly increased. Put another way, inflating the number
of contributors leads to an increase in non-zero LRs. In fact, the most
common occurrence from inflating the number of contributors is that
during deconvolution the additional proposed contributor is assigned a
very low template (near 0) and can possess any genotype (including
complete dropout) with relatively even weight. This is visually seen in
Figs. 8 and 9 by the peak of log;o(LR)s just below O.

3.4. Allele sharing

A demonstration of the effect that allele sharing has on the LR is
confounded by other factors that affect the magnitude of the.LR, such
as:

» The amount of DNA that the individual has donated to the sample,

e The mixture proportions of the contributors (mixtures at an even
mixture proportion will tend to have lower LRs, due to the reduction
in information that peak heights provide to determine genotype
sets),

o Masking of minor contributors in stutter positions of major con-
tributors.

An individual that shares 100% of alleles with the other con-
tributors to a mixture can still have their genotype resolved completely,
based on peak heights, given the right circumstances (as seen in Fig. S8
for the family set). The ability to use peak heights in this way is one of

30+

20+

log(LR)

AS

s (0,0.6]
e (0.5,0.7]
s (0.7,1)

APH

1024 409

Fig. 10, The size of the log,¢{LR) by considering differing amounts of input DNA (APH) and amount of allelic sharing (AS). The set of data points with high AS (0.7,1] are a family set
(father, mother, children) where all alleles from the children are masked by the parents and therefore APH was set to half of the AT.
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the main drivers for the differences in LRs produced between fully and
semi-continuous systems. In Fig. 10 we show the LR (on log¢ scale) for
all data in the study, broken up into three categories of allele sharing, 0
to 0.5, 0.5-0.7 and 0.70-1.0. The lines in Fig. 10 are LOWESS lines to
demonstrate the general trends of the data,

From Fig, 10, it appears that the greater the allele sharing, the less
the power there is to discriminate a true contributor from a non-con-
tributor. This trend is intuitive as it would be expected that the more an
individual’s alleles are already accounted for by others in the mixture,
the less ‘need’ there is for someone possessing those alleles to reason-
ably explain the observed peaks in the mixture, However, further ex-
perimentation shows that this apparent trend is totally confounded by
the number of contributors to the mixture. Fig. 11 shows the same style
of result as Fig. 10, but plotted by number of contributors. In Fig. 11 the
recovered weight of evidence is plotted, that is, log;o(LR)/log10(1/
RMP). RMP is the conditional match probability following the Balding
and Nichols model [25] and a theta (Fgp) of 0.01. Carrying out this
transformation accounts for the different profiling systems that are
being combined in this meta-analysis. In these plots the y-axis is
bounded by one demonstrating that the LR cannot exceed one divided
by the random match probability.

The trend seen in Fig. 2 is that higher order mixtures tend to have
true contributors that share more alleles (because there are more of
them to potentially share), and Figs. S1-S9 demonstrate that higher
order mixtures tend to have less discrimination power. Therefore, there
is a correlation between allele sharing and LR evident in Fig. 10, par-
ticularly at low APH. In Fig. 11 this trend disappears, showing that it is
an effect of number of contributors, and not allele sharing, that is the
main driver to LR change.

In Fig. 12 we plot a density plot of log;o(LR)/10g10(1/RMP) by the
amount of allele sharing of the non-contributors with the true con-
tributors. The logio(LR)/10og1¢(1/RMP) cannot exceed one, which would
indicate a fully resolved component. Inspection of Fig. 12 shows that as
the fraction of shared alleles increases the log;o(LR)/108,0(1/RMP) for
the non-contributor increases. As allele sharing of the non-contributors

Recovered WoE vs APH by allele sharing for 3p, 4p, 5p, 6p, APH <= 5000
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with the true contributors decreases, the log;o(LR)/10g10(1/RMP) de-
creases with more observations around zero, indicated by the broad-
ening of shape. Fig. 12 shows that non-contributors are unlikely to yield
large LRs even if they share many alleles with the true contributors, In
other words, non-contributors that share most of their alleles with the
mixture’s donors can typically still be excluded because the peak
heights make their inclusion unlikely.

On the other hand, Fig. 6 shows that true contributors can yield LRs
close to the inverse of the single source match probability even in five
person mixtures. This means that at least this mixture donor’s compo-
nent is almost fully resolved on the basis of peak heights., This may be
expected, for instance, in a 10:1:1:1:1 mixture where the major may be
clearly resolved by simply ‘eyeballing’ the electropherogram.

4. Discussion
4.1. Performance of the system with regards to contributor number

In principle, we observe less discriminatory LRs for true and non-
contributors when the number of assigned contributors increases. This
has been demonstrated previously using STRmix™ [14,21]. This does
not mean that mixed DNA profiles containing more contributors are less
reliable, just that they are less informative with respect to potential
contributors.

The true number of contributors to a crime profile is never known.
Within this work we have used the apparent number of contributors
when interpreting the mixtures. Apparent N was determined by each
submitting laboratory using their own validated methods. The assigned
N can be fewer than the true N when individuals within a profile have
“dropped out” (their alleles falling below the detection limit of the CE)
and within mixtures of contributors with high amounts of allele sharing
(an extreme example being mixtures of related individuals). Apparent N
may be assigned a number higher than true N in the presence of arte-
facts, such as stutter, that are larger than expected. This assignment can
be confounded in saturated profiles.
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Fig. 11. The size of the recovered weight of evidence log;o(LR)/10g10(1/RMP) by considering differing amounts of input DNA (APH) and amount of allelic sharing (AS) plotted by true
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Fig. 12. Density plot of log;¢(LR)/10g;0(1/RMP) by the amount of allele sharing of the non-contributors with the true contributors,

As the number of contributors to a DNA profile increases, the DNA
mixture becomes more complex. Figs. S1 through S9 show LRs gener-
ated for H,, and Hy true for apparent three, four and five person mix-
tures plotted against APH. As the number of contributors to the mixture
increases the LRs trend towards one. This holds true for both H, and Hy
true although the effect for Hy true data is less clear given the number of
data. As the number of contributors to a mixture increases, so too do the
potential genotype combinations that can explain the observed data.
This results in an overall reduction in the weights assigned to each
genotype set, as these weights are spread across more potential geno-
type sets. This behaviour was previously described by Taylor [21].

When overestimating the number of contributors to a mixture
(N + 1) the LR generally decreased for true contributors. This can be
explained by STRmix™ spreading the weights for the true donors across
more genotype sets. For four person mixtures the magnitude of the
effect on the LR for known contributors was somewhat dependent on
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the proportion that the donor contributed to the mixture, The effect was
greater for minor contributors to the mixture and less for major con-
tributors (represented by more data points on the x = y line within
Fig. 7). Overestimating the number of contributors had little or no ef-
fect on the LR of the major contributor to the mixture, demonstrated by
the largest circles sitting on the x =y trend line. In these cases the
additional proposed contributor was modelled as a trace contributor,
sharing alleles with the true minor contributors to those mixtures and
having little effect on the major. For the three person mixtures the ef-
fect was more visible across a range of mixture proportions. This was
likely due to similarities in mixture proportions of the different con-
tributors; with no obvious major contributors.

The effect of overestimation of the number of contributors was also
determined for non-contributors using Hy true tests. When assuming
N + 1 the number of occurrences of non-contributors resulting in non-
exclusionary LRs increased. During deconvolution the additional

Fig. 13. Plot of percentage of mixtures showing various dif-
*-3 ferences between apparent N and known N against known N.

As an example, —1 indicates apparent N was one fewer than
®-2 known N.

69% -0
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proposed contributor is assigned very low template and can possess any
genotype leading to these results.

In summary, overestimation of the number of contributors generally
leads to lower LRs for true contributors (Fig. 7) and an increase in LRs
for non-contributors (Fig. 8).

Underestimating the number of contributors can result in false ex-
clusions of true donors. In this study, this is seen when apparent N is
fewer than true N. This is demonstrated in the H, true plots within the
Supplementary material where apparent N that differs from known N
are indicated with a different plotting symbol.

When assigning N, for false donors the only risk is overestimation,
as there is a small increase in the number of very low grade false in-
clusions. With respect to the LR for true donors, you are either correct
or conservative when N is either under or overestimated.

In Fig. 13 we provide a plot showing the level of over and under-
estimation of the apparent N compared to the known N in this study.

Fig. 13 shows that an underestimation of N was more common than
an overestimation of N. There are three broad reasons why N might be
underestimated:

1) One contributor has donated so little DNA that their presence is
unseen in the DNA profile, we call this the tiny minor scenario;

2) Contributors are present so that one or more is completely masked
by others in the profile, and in a way so that peak height does not
reveal their presence. This is the hidden contributor scenario;

3) There is a combination of multiple low-level contributors that, due
to some masking and some dropout, produce a profile where the
apparent number of contributors is fewer than the known number of
contributors. This is the low level donors’ scenario.

Each of these is discussed in turn below.

4.1.1. The tiny minor

Any profile is a result of fragments of DNA that have been aliquoted
from a DNA extract and then amplified during PCR. There exists a
possibility that no DNA fragments from a minor DNA donor have been
sampled for PCR. We first ask what we consider to be the correct
number of contributors; the number of different individual’s DNA in the
DNA extract, or the number of different individual’s DNA in the PCR? If
it is the former, then we would ask; if the individual has contributed so
little DNA that the observed fluorescence in the DNA profile is not af-
fected by their presence, then what purpose is served by considering
them as a contributor? We note that many of the underestimates of
number of contributors in this study arise from such situations.

4,1.2. The hidden contributor .

Consider a DNA profile where multiple individuals, are contributing
to a DNA profile, however they possess sufficient allelic overlap so that
the DNA profile appears as a lower order mixture. The apparent number
of contributors being lower than the known number of contributors
relies on the DNA profile being formed in such a way that peak im-
balances will not indicate the true number of contributors. For example,
a combination of two individuals who are homozygous at each locus,
combined in equal proportions to a DNA sample will always appear
single source. However, this risk of multiple contributors being com-
bined to meet theses specifications is very remote, and artificial. It only
tends to occur in mixtures of family members, such as a child and their
parents donating equal amounts of DNA to a sample. The Coble et al.
[26] experiment is valuable but does not take into account peak
heights, and so the study does not reflect the information that peak
heights provide analysts in their assignment of N. This is evident in the
difference between the results obtained by Coble et al. and our work.
For example, Coble et al. reported the probability of a known five-
person mixture presenting as an apparent five person mixture was less
than 0.01, whereas in our study, based on human assignment, this
probability is 0.36 (and noting that many of the remaining mixtures fall
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into the tiny minor and low donor scenarios).

4.1.3. The low level donors’ scenario

This scenario is where there are multiple low level contributors,
who are present in low amounts such that they exhibit significant
dropout and so in combination the apparent number of contributor is
fewer than the known number of contributors. This is a scenario that
could plausibly occur with reasonable probability when multiple low
level contributors are present (see [16] for an exploration of this). Ex-
perimentation has shown that very low level contributors will yield LRs
of approximately one. It is likely that when analysed under the known
number of contributors, all true (and a majority of false) contributors
give this neutral LR value. In other words, the profile does not have the
information in order to distinguish true from false donors. If analysed as
the apparent number of contributors then the likely outcome is an ex-
clusion of the known contributors (and more exclusions of non-con-
tributors). The primary difference in LR between known and apparent
number of contributors is between neutral and possibly exclusionary,
which we could argue presents less risk of misleading a court.

4.1.4. Overestimating the number of contributors

Our studies show that the chance of overestimating N in relation to
the known value is less common that underestimation and cannot be
predicted so easily by simulation as in Coble et al. [26]. It requires two
events to occur:

1) There is a stochastic event, such as a peak imbalance, high stutter or
drop-in, which occurs at an improbable level,

2) The analyst interpreting the profile feels that the out-of-place
fluorescence has resulted in a profile that is more likely to exist if it
has originated from more contributors that the known number of
contributors.

Fig. 7 shows that the effect of overestimation of N is relatively mild
on known contributors to a DNA profile. STRmix™ assigns near-zero
mass to the non-existent contributor, leaving the other contributors
relatively unchanged. The largest effect is to decrease the LR for minor
known contributors. For non-contributors, Fig. 8 shows the effect that
has previously been described, i.e. that an overestimation of N tends to
increase low-level LRs for non-contributors, In effect the experiment is
showing the practical functioning of the catch-all statement suggested
earlier.

Our findings show that as mixture complexity increases, the ability
of an analyst to designate the known number of contributor is reduced.
As explained, it is actually often the apparent number of contributors
that is the more appropriate value to choose for analysis. In assigning
apparent number of contributors the overwhelming result is alignment
with the desired trends in LRs with regards to profile complexity and
DNA amount (i.e. those described in [21], wheré known number of
contributors was used for all analyses) are obtained. In the rare cir-
cumstances where the known contributors were not supported as do-
nors of DNA to the profile, this was due to one of the three under-
estimate conditions described above in 4.1.1 through 4.1.3 above.

4.2.. Performance as a function of amount of allele sharing

Within Fig. 10 the trend is that the greater the allele sharing, the less
the power to discriminate a true contributor from a non-contributor.
However, this relationship is dominated by the number of contributors
within the mixture (as seen in Fig. 11). Higher order mixtures result in
less informative LRs. This effect is related more to the number of con-
tributors within a mixture than the amount of allele sharing between
contributors within the mixture. There is a relationship between the
number of contributors and proportion of allele sharing within a mix-
ture. It has previously been shown that the probability of a higher order
mixture appearing as having originated from one fewer individual
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based on allele count alone is high [26,27]. For example, Coble et al.
calculated the probability of a six contributor profile appearing as a five
contributor profile based on allele count as 0.8599 for the GlobalFiler™
24 locus multiplex [26]. The study by Coble et al. did not take into
account peak height, thereby making the values in their study a worst
case scenario.

4.3, Performance of the system with regards to amount of DNA

In principle, we observe less discriminatory LRs for true and non-
contributors when the APH (template) decreases per contributor. Again,
this does not mean that mixed DNA profiles with contributors con-
taining less DNA are unreliable, just they are less informative with re-
spect to the true and non-contributors.

PCAST describe limits on PG reliability based on mixture proportion
and number of contributors. Per contributor template is more in-
formative of LR than mixture proportion. With respect to mixture
proportion, the limit is not the software but the hardware. For example,
assuming a minor contributor’s alleles within a mixture are present just
above the analytical threshold of a 3130 (typically 50 rfu) and a major
contributor’s alleles are at the saturation limit (typically 7000 rfu), this
would be maximum mixture proportion of 140:1. 2293 out of the 2825
submitted profiles had at least one component who contributed less
than 20% of the sample.

5. Conclusion

In their review of published literature validating probabilistic gen-
otyping, PCAST surmised that the limits of foundational validity ex-
tended to three person mixtures where the person of interest made up at
least 20% of the profile. What was not taken into account during the
PCAST review was a wealth of unpublished validation material residing
in laboratories that had validated (or were in the process of validating)
probabilistic genotyping software. Due to our involvement with
STRmix™ we are aware of the breadth of such validation material for
STRmix™ specifically, and assume that similar material must be present
for other probabilistic genotyping systems. A disconnect exists between
the PCAST desire for laboratories to publish their validation material in
peer reviewed journals and the general resistance to such publications
by the journals themselves. This is for the completely understandable
reason that they are generally not novel, or, individually, of general
interest to the forensic community.

PCAST has said “When further studies are published, it will likely be
possible to extend the range in which scientific validity has been estab-
lished to include more challenging samples. As noted above, such studies
should be performed by or should include independent research groups
not connected with the developers of the methods and with no stake in the
outcome.”

There has already been an example of published materijal that ex-
tend the PCAST limits, from the Forensic Biclogy laboratory at the
Federal Bureau of Investigation [14]. We add to that published work, by
compiling the STRmix™ validation material from 31 laboratories, which
allows a novel look at data spanning laboratory technology and process.
PCAST highlighted four key areas that they felt additional validation
would be merited:

(1) How well does the method perform as a function of the number of
contributors to the mixture? How well does it perform when the
number of contributors to the mixture is unknown?

(2) How does the method perform as a function of the number of alleles
shared among individuals in the mixture? Relatedly, how does it
perform when the mixtures include related individuals?

(3) How well does the method perform—and how does accuracy de-
grade—as a function of the absolute and relative amounts of DNA
from the various contributors?
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(4) Under what circumstances—and why—does the method produce
results (random inclusion probabilities) that differ substantially
from those produced by other methods?

We address points 1 to 3 in this study. It is unknown whether further
addendums will be released by the PCAST group, or whether there are
any plans for a follow-up study in the future. The material we provide
here demonstrates a foundational validity of, at least, the STRmix™
software method for complex, mixed DNA profiles to levels well beyond
the complexity and contribution levels suggested by PCAST. The study
was done in accordance with the specific manner outlined in the PCAST
report.

Acknowledgements

This work was supported in part by grant 2011-DN-BX-K541 from
the US National Institute of Justice. Points of view in this document are
those of the authors and do not necessarily represent the official posi-
tion or policies of their organisations. The authors would like to thank
Professor James Curran for his help in creating the plots in Fig. 1.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at hitp://dx.dol.org/10.1016/j.fsigen.2018.01.003.

References

President’s Council of Advisors on Science and Technology, PCAST Releases Report
on Forensic Science in Criminal Courts, (2016).

[2] President’s council of advisors on sclence and technology, An Addendum to the
PCAST Report on Forensic Science in Criminal Courts, (2016

AA. Mitchell, J. Tamariz, K. O'Connell, N, Ducasse, Z. Budimlija, M. Prinz, et al,
Validation of a DNA mixture statistics tool incorporating allefic drop-out and drop-
in, Forensic Sci, Int. Genet, & (2012) 749-761.

MW. Perlin, M.M. Legler, C.E. Spencer, J.L. Smith, W.P. Allan, J.L. Belrose,
Validating TrueAllele” DNA mixture interpretation, J. Forensic Sci. (2011} 2011.
J.-A. Bright, D. Taylor, C.E. McGovern, S. Cooper, L. Russell, D. Abarno, et al,
Developmental validation of STRmix™, expert software for the interpretation of
forensic DNA prafiles, Forensic Sci. Int. Genet. 23 (2016) 226-236.

F.M. Gétz, H. Schénbom, V. Borsdorf, A.-M., PAugbeil, D, Labudde, GenoProof
Mixture 3—Mew software and process to resolve complex DNA mixtures, Forensic
Sci. Int. Genet. Suppl. Ser. (2017},

S. Manabe, C. Morimoto, Y. Hamano, S, Fujimoto, K. Tamaki, Development and
validation of open-source software for DNA mixture interpretation based on a
quantitative continuous model, PLoS One 12 (2017) ¢0188183.

Scientific Working Group on DNA Analysis Methods (SWGDAM), Guidelines for the
Validation of Probabilistic Genotyping Sysiems, (2015).

M.D. Coble, J. Buckdeton, J.M. Butler, T. Egeland, R. Finuners, P, Gill, et al,, DNA
Commission of the Infernational Society for Forensic Genetics: recommendations on
the validation of software programs performing biostatistical caleulations for for-
ensic genetics applications, Forensic Sci. Int. Genet. 25 (2016) 191-197,

D. Taylor, J.-A. Bright, J. Buckleton, The interpretation of single source and mixed
DNA profiles, Forensic Sci, Int. Genet. 7 (2013} 516-528.

J-A, Bright, D, Taylor, J.M. Curran, 1.8, Buckleton, Developing allelic and stutter
peik height models for a continuous method of DNA interpretation, Forensic Sci.
Int. Genet. 7 (2013} 296-304,

The New York City Office of Chief Medical Examiner, Internal Validation of
STRmix™ V2.4 for Fusion NYC OCME, {2016},

District of Columbia Department of Forensic Science Forensic Science Laboratory
Forensic Biology Unit. Internal Validation of STRmix™ V2,3, (2015},

T.R. Moretti, R.S. Just, S.C. Kehl, L.E. Willis, J.5. Buckleton, J.-A. Bright, et al.,
Internal validation of STRmix for the interpretation of single source and mixed DNA
profiles, Forensic Sci, Int. Genet, 29 (2017) 126-144,

T.R. Morelti, L.I. Moreno, J.B. Smerick, M.L. Pignone, R, Hizon, J.S. Buckleton,

et al,, Population data on the expanded CODIS core STR loci for eleven populations
of significance for forensic DNA analyses in the United States, Forensic Sci. Int,
Genet. 25 (2017} 175~181.

D. Taylor, J. Buckletan, J.-A. Bright, Does the use of probabilistic genotyping
change the way we should view sub-threshold data, Aust. J. Forensic Sci. 49 (2017)
78-92,

D. Taylor, J. Buckleton, I Evett, Testing likelihood ratios produced from complex
DNA profiles, Forensic Sci. Int. Genet, 16 (2015) 165-171.

J.-A. Bright, D. Taylor, J. Curran, J. Buckieton, Searching mixed DNA profiles di-
rectly against profile databases, Forensic Sci. Int. Genet. 9 (2014) 102-110.

J.-A. Bright, J.M. Gurran, J.S. Buckleton, The effect of the uncertainty in the number
of contributors to mixed DNA profiles on profile interpretation, Forensie Sci, Int.

[1]

3]

41
[5]

[61

[7

ot

[8

=

[91

[10]

1

[12]
[13]

[14]

[15]

(16]

(17]
{18}

[19]




2:17-cr-20037-JES-JEH # 222-4 Page 14 of 14

J.-A. Bright et al.

Genet, 12 (2014) 208-214,

[20] J.L. Hintze, R.D. Nelson, Violin plots a box plot-density trace synergism, Am. Stat,
52 (1998) 181-184,

[21] D. Taylor, Using continuous DNA interpretation methods to revisit likelihood ratio
behaviour, Forensic Sci. Int, Genet. 11 (2014) 144-153.

[22] H. Wickham, Ggplot2-Elegant Graphics for Data Analysis, 2nd edition, Springer-
Verlag, New York, 2016.

[23] Applied Biosystems User Bulletin Applied Biosystems  3500/3500xL Genetic
Analyzer, Life Technologies internal report, Foster City, CA), 2011,

[24] D. Taylor, J. Buckleton, J.-A. Bright, Factors affecting peak height variability for

24

[25]

{26]

[27}

Forensic Science International: Genetics 34 (2018) 11-24

short tandem repeat data, Forensic Sci. Int. Genet. 21 (2016) 126-133.

D.J. Balding, R.A. Nichols, DNA profile match probubility calculation: how to allow
for population stratification, relatedness, database selection and single bands,
Forensic Sci. Int. 64 (1994) 125-140,

M.D. Coble, J.-A, Bright, J.S. Buckleton, J.M, Curran, Uncertainty in the number of
contributors in the proposed new CODIS set, Forensic Sci. Int. Genet. 19 (2015)
207-211. '

J.8. Buckleton, J.M. Gurran, P. Gill, Towards understanding the effect of uncertainty
in the number of contributors to DNA stains, Forensic Sci. Int, Genet. 1 {2007)
20-28,




