2010

ABC 13 Gulf Water Analysis Report of Findings

For: Channel 13 KTRK 3310 Bissonnet Houston, TX 77005

723 Main Street, Ste. 408 Houston, TX 77002 (832) 422-2425 www.EcoServeCorp.com

President rhfarrell@EcoServeCorp.com Cell 832.275.0960

July, 29, 2010

From the end of June 2010, through the middle of July 2010, a surface water sampling project was conducted by Channel 13 KTRK with the assistance of EcoServe Environmental Consulting Corp. These samples were collected to determine if there is a presence of "oil" in the surface water near the shoreline along the gulf coast, in the Gulf of Mexico, that may be related to the deep water horizon oil spill event. The first sample taken, June 28, 2010, was a grab sample collected at East Beach in Galveston. Also on June 28, 2010, a composite sample was taken from surface water at Stewart Beach and Paretto Beach, Galveston, TX. On July 2, 2010 a grab sample was collected of surface water at Pensacola, FL and Gulf Shores, AL along the Gulf of Mexico shoreline. On July 14, 2010 another composite sample from East Beach, Paretto Beach and 51st Beach, Galveston, TX was collected after there were reports of tar balls washing up on some Galveston Beaches. These samples were analyzed for Biochemical Oxygen Demand, Carbonaceous Biochemical Oxygen Demand, Chemical Oxygen Demand, Ignitability, Oil and Grease, pH, Semi-Volative Organic Compounds, Total Petroleum Hydrocarbons, and Volatile Organic Compounds. These analyses will determine if there are significant amounts of "oil" or Petroleum Hydrocarbons present in the surface water in the surface water along the shoreline.

Biochemical Oxygen Demand (BOD) is a measure of the amount of oxygen consumed by organisms while breaking down organic materials, including petroleum hydrocarbons, present in the water (algae, seaweed, dead organisms, oil, etc.). A high BOD implies there are low amounts of oxygen in the water which puts stress on aquatic animals and plants and can result in death or fish kills. Testing for BOD measures the oxidation of all organic carbon, ammonia, and inorganic compounds such as iron and sulfur. BOD is typically divided into two parts- Carbonaceous Biochemical Oxygen Demand (CBOD) and Nitrogenous Oxygen Demand. CBOD is the result of the breakdown of hydrocarbons and organic molecules such as cellulose and sugars into carbon dioxide and water. Nitrogenous Oxygen Demand is the result of the breakdown of proteins. As seen in most lab reports, CBOD will always be lower than BOD since it is a constituent of BOD. Nitrogenous Oxygen Demand was not tested for but can be calculated by subtracting the CBOD from the BOD.

Chemical Oxygen Demand (COD) is essentially the same as BOD, except it uses chemicals instead of microorganisms to oxidize carbon in the sample. COD is so much higher because the chemicals will oxidize all organic material present in a sample while the microorganisms in the BOD test are susceptible to pH, temperature, salinity and other variables in the water.

Total Organic Carbon (TOC) is the measure of all organic carbon in a sample, but this specific test was not performed on the samples collected. However, Total Petroleum Hydrocarbons (TPH) was tested for

and results returned not detected (ND). ND means that levels were below the reporting limit. The reporting limit is the lowest detectable amount the laboratory is capable of detecting the presence of a chemical through current laboratory analysis methods.

Grab samples collected at East Beach in Galveston, TX on June 28, 2010 were preserved and analyzed. Lab reports indicated a BOD of 2.15 mg/L, CBOD of 2.09 mg/L and a COD of 192 mg/L. The ignitability (temperature at which the sample ignites) was >212 °F, which is the boiling point of water. Oil and grease was ND (<5 mg/L), pH was 8.51 and the temperature of the sample was 20.6 °C*. All SVOCs, VOCs and TPH were reported as ND.

Lab reports for the composite samples collected at Stewart Beach and Porreto Beach in Galveston, TX on June 28, 2010 reported a BOD of 3.79 mg/L, CBOD of 2.48 mg/L and a COD of 289 mg/L. The ignitability of the sample was >212 °F, oil and grease was ND (<5 mg/L), pH was 8.49 and the temperature of the sample was 20.6 °C*. All SVOCs, VOCs and TPH tested for were ND.

Grab samples collected in Gulf Shores, AL on July 2, 2010 were preserved and analyzed. The lab report indicated a BOD of 3.38 mg/L, CBOD of 2.58 mg/L and a COD of 248 mg/L. The ignitability was >212 °F, oil and grease was ND (<5 mg/L), pH was 8.49 and the temperature of the water was 20.6 °C*. There were no detectable quantities any SVOCs, VOCs or TPH.

Lab reports for the grab samples collected in Pensacola, FL on July 2, 2010 reported a BOD of 2.04 mg/L, a CBOD of 2.03 mg/L and a COD of 70.9 mg/L. The ignitability of the sample was >212 °F, oil and grease was ND (<5 mg/L), pH was 8.46 and the temperature was 20.6 °C*. All SVOCs, VOCs and TPH were reported as ND.

The composite samples collected at East Beach, Poretto Beach, and 51st Beach in Galveston on July 14, 2010 were analyzed and lab results indicated that BOD and CBOD were both ND (<2 mg/L). COD was 233 mg/L and the ignitability was >212 °F. Oil and Grease was ND (<5mg/L), the pH was 8.28 and the temperature was 25.4 °C*. There were no detectable amounts of any SVOCs, VOCs or TPH

Because TPH was not detected, it is EcoServe Environmental Consulting Corp.'s professional opinion that all carbon oxidized in the BOD, CBOD, and COD tests were forms of organic carbon naturally present in the surface water near beaches and not associated with petroleum hydrocarbons. Other tests performed on the samples were tests for oil and grease which was not detected in all samples, ignitability which was >212 °F in all samples and can be considered normal because it is the boiling point of water. Volatile Organic Compounds (VOC) and Semi-Volatile Organic Compounds (SVOC), which test for organic chemical compounds that are constituents of oil and petroleum hydrocarbons, were also tested for. The results indicated ND for all chemicals, one chemical, 2-chloroethyl vinyl ether**, was reported as ND J. ND J means

the sample was estimated to be not detectable due to an error in sample preservation. This error could take place in the field, during transport, or at the laboratory itself.

According to many reporting agencies, the spill was not as far west at the Texas-Louisiana border, at the time these samples were taken. And while the plume may have reached Gulf Shores, AL and Pensacola, FL, the major concentration of the released oil has been reported to be one to two miles from most beaches.

After reviewing the laboratory results, it is EcoServe Environmental Consulting Corp.'s professional opinion that at the time of sampling, there was no presence of "oil" at the reporting limits in the surface water near the shoreline at sampled beaches along the gulf coast, in the Gulf of Mexico, that may be related to the deep water horizon oil spill event or any other petroleum releases.

	BOD (mg/L)	CBOD (mg/L)	COD (mg/L)	Ignitability (°F)	Oil and Grease (mg/L)	Hd	Temperature* (°C)	VOCs (µ g/L)	трн (µ g/L)	SVOCs (µ g/L)
East Beach, Galveston, TX	2.15	2.09	192	>212	ND	8.51	20.6	ND	ND	ND
Stewart Beach and Paretto Beach, Galveston, TX	3.79	2.48	289	>212	ND	8.49	20.6	ND	ND	ND
Gulf Shores, AL	3.38	2.58	248	>212	ND	8.49	20.6	ND	ND	ND
Pensacola, FL	2.04	2.03	70.9	>212	ND	8.46	20.6	ND	ND	ND
East Beach, Paretto Beach and 51 st Beach, Galveston, TX	ND	ND	233	>212	ND	8.28	25.4	ND	ND	ND

^{*}This temperature is the temperature of the sample when it was delivered to the laboratory for testing in a cooler of ice and should not be used as the actual water temperature of the specified beach.

^{**2-}Chloroethyl vinyl ether was reported at ND J, which means it could not be accurately tested due to an error in the sample preservation of the sample and was estimated to be ND.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

<u>10060878</u>

Report To: Project Name: ABC 13 Gulf Water Analysis

ABC 13 Site: Galveston, TX

Justin Sternberg Site Address: 3310 Bissonnet Street

Houston PO Number:

Texas <u>State:</u> Texas

77005- <u>State Cert. No.:</u> T104704205-10-4

ph: (713) 578-2900 fax: <u>Date Reported:</u> 7/13/2010

This Report Contains A Total Of 48 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: **ABC 13**

Certificate of Analysis Number:

10060878

Report To: **ABC 13 Gulf Water Analysis Project Name:** Site: Galveston, TX **ABC 13 Justin Sternberg Site Address:** 3310 Bissonnet Street PO Number: Houston State: Texas **Texas** 77005-T104704205-10-4 State Cert. No.: ph: (713) 578-2900 fax: 7/13/2010

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

Date Reported:

II: ANALYSIS AND EXCEPTIONS:

SW8260B Volatile Organics:

The results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

For QC Batch ID: R304372, trans-1,4-Dichloro-2-Butene and 2-Nitropropane were above the upper control limit in the LCS indicating a possible high bias; however, this compound was not detected in these samples and therefore data is acceptable.

For QC Batch ID: R304372, the project samples were not randomly selected for use in SPL's quality control program; therefore, this sample matrix is not applicable to your project samples.

SW8270C Semivolatile Organics:

For QC Batch 100698, a matrix spike and matrix spike duplicate was not extracted in the analytical batch due to insufficient sample volume. A laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) were extracted with the batch and serve as batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria was met.

TX1005 TPH:

For TX1005 TPH QC Batch ID: 100762, client sample ID "GLV1" (SPL ID:10060878-01) was selected for use in SPL's quality control program as the Matrix Spike/Matrix Spike Duplicate (MS/ MSD). The %RPD for the MS and MSD recovered outside control limits. Recovery for MS and MSD was within control limits.

EPA1664 Oil & Grease:

No exceptions noted.

Wet Chemistry:

The holding time for pH is immediate and should be performed at the time of sampling. Client is aware of the holding time, SPL performed the analysis as soon as possible after the sample receipt.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg/kg-dry " or "

10060878 Page 1

7/13/2010

Sonia West

Date

ma West

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: ABC 13

Certificate of Analysis Number:

10060878

ug\kg-dry ").

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Sonia West

10060878 Page 2

7/13/2010

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

10060878

ABC 13 Report To:

Justin Sternberg

3310 Bissonnet Street

Houston

Texas 77005-

ph: (713) 578-2900 fax:

Fax To:

ABC 13 Gulf Water Analysis Project Name:

Site:

Galveston, TX

Site Address:

PO Number:

State: Texas

State Cert. No.: T104704205-10-4

Date Reported: 7/13/2010

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
GLV1	10060878-01	Water	06/28/2010 11:01	6/28/2010 1:54:00 PM	287545	
GLV2	10060878-02	Water	06/28/2010 11:50	6/28/2010 1:54:00 PM	287546	

Donia West

7/13/2010

Date

Sonia West

Senior Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen **Quality Assurance Officer**

рΗ

Temperature (oC)

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

06/28/10 15:30 PAC

06/28/10 15:30 PAC

1

5526245

5526245

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

				Site:	Galve	eston, 1	ГХ			
Analyses/Method	F	Result	QUAL	Rep.Lir	nit		Dil. Fac	ctor Date Ana	lyzed Analyst	Seq. #
BIOCHEMICAL OXYGE	N DEMAND - 5	DAY	S			MCL		SM5210 B	Units: mg/L	
Biochemical Oxygen Dema	and	2.15			2		1	06/28/10	16:00 PAC	5530970
CARBONACEOUS BIO	CHEMICAL OX	YGEN	DEMAND) - 5 DAY		MCL		SM5210 B	Units: mg/L	
Biochemical Oxygen Dema Carbonaceous	and,	2.09			2		1	06/28/10	16:00 PAC	5530977
CHEMICAL OXYGEN D	EMAND					MCL		SM5220 C	Units: mg/L	
Chemical Oxygen Demand	d	192			12		4	06/29/10	11:30 PAC	5527045
IGNITABILITY						MCL		SW1010A	Units: °F	
Ignitability		>212			70		1	06/29/10	14:30 EB1	5527277
OIL AND GREASE BY I	METHOD 1664					MCL		1664A	Units: mg/L	
Oil and Grease		ND			5		1	07/09/10	15:10 EAG	5535730
Prep Method	Prep Date	<u> </u>	Prep Initials	Prep Facto	or					
	07/09/2010 11:45			1.00						
PH - WATER						MCL		SW9040C	Units: pH Un	its

0.1

0.1

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

8.51

20.6

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

Site: Galveston, TX

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 8270C		MCL SV	V8270C Ui	nits: ug/L	
1,2,4,5-Tetrachlorobenzene	ND	10	1	07/02/10 13:14	S_G	5532086
1,2,4-Trichlorobenzene	ND	5	1	07/02/10 13:14	S_G	5532086
1,2-Dichlorobenzene	ND	5	1	07/02/10 13:14	S_G	5532086
1,2-Diphenylhydrazine	ND	10	1	07/02/10 13:14	S_G	5532086
1,3,5-Trinitrobenzene	ND	10	1	07/02/10 13:14	S_G	5532086
1,3-Dichlorobenzene	ND	5	1	07/02/10 13:14	S_G	5532086
1,3-Dinitrobenzene	ND	10	1	07/02/10 13:14	S_G	5532086
1,4-Dichlorobenzene	ND	5	1	07/02/10 13:14	S_G	5532086
1,4-Napthoquinone	ND	50	1	07/02/10 13:14	S_G	5532086
1-Chloronaphthalene	ND	5	1	07/02/10 13:14	S_G	5532086
1-Methylnaphthalene	ND	5	1	07/02/10 13:14	S_G	5532086
1-Naphthylamine	ND	5	1	07/02/10 13:14	S_G	5532086
2,3,4,6-Tetrachlorophenol	ND	10	1	07/02/10 13:14	S_G	5532086
2,4,5-Trichlorophenol	ND	10	1	07/02/10 13:14	S_G	5532086
2,4,6-Trichlorophenol	ND	5	1	07/02/10 13:14	S_G	5532086
2,4-Dichlorophenol	ND	5	1	07/02/10 13:14	S_G	5532086
2,4-Dimethylphenol	ND	5	1	07/02/10 13:14	S_G	5532086
2,4-Dinitrophenol	ND	25	1	07/02/10 13:14	S_G	5532086
2,4-Dinitrotoluene	ND	5	1	07/02/10 13:14	S_G	5532086
2,6-Dichlorophenol	ND	50	1	07/02/10 13:14	S_G	5532086
2,6-Dimethylphenol	ND	5	1	07/02/10 13:14	S_G	5532086
2,6-Dinitrotoluene	ND	5	1	07/02/10 13:14	S_G	5532086
2-Acetylaminofluorene	ND	10	1	07/02/10 13:14	S_G	5532086
2-Chloronaphthalene	ND	5	1	07/02/10 13:14	S_G	5532086
2-Chlorophenol	ND	5	1	07/02/10 13:14	S_G	5532086
2-Methylnaphthalene	ND	5	1	07/02/10 13:14	S_G	5532086
2-Naphthylamine	ND	5	1	07/02/10 13:14	S_G	5532086
2-Nitroaniline	ND	25	1	07/02/10 13:14	S_G	5532086
2-Nitrophenol	ND	5	1	07/02/10 13:14	S_G	5532086
2-Picoline	ND	5	1	07/02/10 13:14	S_G	5532086
2-Toluidine	ND	25	1	07/02/10 13:14	S_G	5532086
3,3'-Dichlorobenzidine	ND	10	1	07/02/10 13:14	S_G	5532086
3,3'-Dimethylbenzidine	ND	25	1	07/02/10 13:14	S_G	5532086
3-Methylcholanthrene	ND	5	1	07/02/10 13:14	S_G	5532086
3-Nitroaniline	ND	25	1	07/02/10 13:14	S_G	5532086
4,6-Dinitro-2-methylphenol	ND	25	1	07/02/10 13:14	S_G	5532086
4-Aminobiphenyl	ND	5	1	07/02/10 13:14	S_G	5532086
4-Bromophenyl phenyl ether	ND	5	1	07/02/10 13:14	S_G	5532086
4-Chloro-3-methylphenol	ND	5	1	07/02/10 13:14	S_G	5532086

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

			Site:	Galveston	n, TX			
Analyses/Method	Result	QUAL	Rep.L	.imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
4-Chloroaniline	ND			5	1	07/02/10 13:14	S_G	5532086
4-Chlorophenyl phenyl ether	ND			5	1	07/02/10 13:14	S_G	5532086
4-Nitroaniline	ND			25	1	07/02/10 13:14	S_G	5532086
4-Nitrophenol	ND			25	1	07/02/10 13:14	S_G	5532086
4-Nitroquinoline-1-oxide	ND			10	1	07/02/10 13:14	S_G	5532086
5-Nitro-o-toluidine	ND			5	1	07/02/10 13:14	S_G	5532086
7,12-Dimethylbenz(a)anthracene	ND			5	1	07/02/10 13:14	S_G	5532086
Acenaphthene	ND			5	1	07/02/10 13:14	S_G	5532086
Acenaphthylene	ND			5	1	07/02/10 13:14	S_G	5532086
Acetophenone	ND			5	1	07/02/10 13:14	S_G	5532086
Aniline	ND			5	1	07/02/10 13:14	S_G	5532086
Anthracene	ND			5	1	07/02/10 13:14	S_G	5532086
Aramite	ND			50	1	07/02/10 13:14	S_G	5532086
Benz(a)anthracene	ND			5	1	07/02/10 13:14	S_G	5532086
Benzidine	ND			20	1	07/02/10 13:14	S_G	5532086
Benzo(a)pyrene	ND			5	1	07/02/10 13:14	S_G	5532086
Benzo(b)fluoranthene	ND			5	1	07/02/10 13:14	S_G	5532086
Benzo(g,h,i)perylene	ND			5	1	07/02/10 13:14	S_G	5532086
Benzo(k)fluoranthene	ND			5	1	07/02/10 13:14	S_G	5532086
Benzoic acid	ND			25	1	07/02/10 13:14	S_G	5532086
Benzyl alcohol	ND			5	1	07/02/10 13:14	S_G	5532086
Biphenyl	ND			50	1	07/02/10 13:14	S_G	5532086
Bis(2-chloroethoxy)methane	ND			5	1	07/02/10 13:14	S_G	5532086
Bis(2-chloroethyl)ether	ND			5	1	07/02/10 13:14	S_G	5532086
Bis(2-chloroisopropyl)ether	ND			5	1	07/02/10 13:14	S_G	5532086
Bis(2-ethylhexyl)phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Butyl benzyl phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Caprolactam	ND			50	1	07/02/10 13:14	S_G	5532086
Carbazole	ND			5	1	07/02/10 13:14	S_G	5532086
Chlorobenzilate	ND			25	1	07/02/10 13:14	S_G	5532086
Chrysene	ND			5	1	07/02/10 13:14	S_G	5532086
Dibenz(a,h)acridine	ND			25	1	07/02/10 13:14	S_G	5532086
Dibenz(a,h)anthracene	ND			5	1	07/02/10 13:14	S_G	5532086
Dibenz(a,j)acridine	ND			5	1	07/02/10 13:14	S_G	5532086
Dibenzofuran	ND			5	1	07/02/10 13:14	S_G	5532086
Diethyl phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Dimethyl phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Di-n-butyl phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Di-n-octyl phthalate	ND			5	1	07/02/10 13:14	S_G	5532086
Dinoseb	ND			10	1	07/02/10 13:14	S_G	5532086

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

			Site:	Galvesto	n, TX			
Analyses/Method	Result	QUAL	Rep.L	.imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Diphenyl oxide	ND			20	1	07/02/10 13:14	S_G	5532086
Diphenylamine	ND			10	1	07/02/10 13:14	S_G	5532086
Ethyl methanesulfonate	ND			10	1	07/02/10 13:14	S_G	5532086
Fluoranthene	ND			5	1	07/02/10 13:14	S_G	5532086
Fluorene	ND		5		1	07/02/10 13:14	S_G	5532086
Hexachlorobenzene	ND			5		07/02/10 13:14	S_G	5532086
Hexachlorobutadiene	ND			5	1	07/02/10 13:14	S_G	5532086
Hexachlorocyclopentadiene	ND			5	1	07/02/10 13:14	S_G	5532086
Hexachloroethane	ND			5	1	07/02/10 13:14	S_G	5532086
Hexachloropropene	ND			5	1	07/02/10 13:14	S_G	5532086
Indeno(1,2,3-cd)pyrene	ND			5	1	07/02/10 13:14	S_G	5532086
Isodrin	ND			5	1	07/02/10 13:14	S_G	5532086
Isophorone	ND			5	1	07/02/10 13:14	S_G	5532086
Isosafrole	ND			10	1	07/02/10 13:14	S_G	5532086
Methapyrilene	ND			5	1	07/02/10 13:14	S_G	5532086
Methyl methanesulfonate	ND			10	1	07/02/10 13:14	S_G	5532086
Methylchrysene	ND			50	1	07/02/10 13:14	S_G	5532086
Naphthalene	ND			5	1	07/02/10 13:14	S_G	5532086
Nitrobenzene	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosodiethylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosodimethylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitroso-di-n-butylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosodi-n-propylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosodiphenylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosomethylethylamine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosomorpholine	ND			25	1	07/02/10 13:14	S_G	5532086
N-Nitrosopiperidine	ND			5	1	07/02/10 13:14	S_G	5532086
N-Nitrosopyrrolidine	ND			5	1	07/02/10 13:14	S_G	5532086
Octachlorostyrene	ND			5	1	07/02/10 13:14	S_G	5532086
p-Dimethylaminoazobenzene	ND			25	1	07/02/10 13:14	S_G	5532086
Pentachlorobenzene	ND			5	1	07/02/10 13:14	S_G	5532086
Pentachloroethane	ND			10	1	07/02/10 13:14	S_G	5532086
Pentachloronitrobenzene	ND			10	1	07/02/10 13:14	S_G	5532086
Pentachlorophenol	ND			25	1	07/02/10 13:14	S_G	5532086
Phenacetin	ND			5	1	07/02/10 13:14	S_G	5532086
Phenanthrene	ND			5	1	07/02/10 13:14	S_G	5532086
Phenol	ND			5	1	07/02/10 13:14	S_G	5532086
p-Phenylenediamine	ND			50	1	07/02/10 13:14	S_G	5532086
Pronamide	ND			10	1	07/02/10 13:14	S_G	5532086
Pyrene	ND			5	1	07/02/10 13:14	S_G	5532086

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

TNTC - Too numerous to count

E - Estimated Value exceeds calibration curve

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

			Sit	e: Galves	ston, TX			
Analyses/Method	Result	QUAL	Re	ep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Pyridine	ND			5	1	07/02/10 13:14	S_G	5532086
Quinoline	ND			50	1	07/02/10 13:14	S_G	5532086
Safrole	ND			5	1	07/02/10 13:14	S_G	5532086
2-Methylphenol	ND			5	1	07/02/10 13:14	S_G	5532086
3 & 4-Methylphenol	ND			5	1	07/02/10 13:14	S_G	5532086
Cresols, Total	ND			5	1	07/02/10 13:14	S_G	5532086
Surr: 2,4,6-Tribromophenol	90.8		%	25-154	1	07/02/10 13:14	S_G	5532086
Surr: 2-Fluorobiphenyl	81.8		%	45-108	1	07/02/10 13:14	S_G	5532086
Surr: 2-Fluorophenol	72.9		%	18-113	1	07/02/10 13:14	S_G	5532086
Surr: Nitrobenzene-d5	83.6		%	41-113	1	07/02/10 13:14	S_G	5532086
Surr: Phenol-d5	58.1		%	10-113	1	07/02/10 13:14	S_G	5532086
Surr: Terphenyl-d14	90.0		%	43-122	1	07/02/10 13:14	S_G	5532086

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	06/30/2010 11:29	N_M	1.00

TPH TEXAS 1005			MCL	TX1005	Units: mg/L	
C6-C12	ND	5	1	07/03/10	6:29 NW	5531630
>C12-C28	ND	5	1	07/03/10	6:29 NW	5531630
>C28-C35	ND	5	1	07/03/10	6:29 NW	5531630
Total TPH (C6-C35)	ND	5	1	07/03/10	6:29 NW	5531630
Surr: 1-Chlorooctane	101	% 70-130	1	07/03/10	6:29 NW	5531630
Surr: o-Terphenyl	93.7	% 70-130	1	07/03/10	6:29 NW	5531630

Prep Method	Prep Date	Prep Initials	Prep Factor
TX1005	07/02/2010 11:26	LSB	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

Site: Galveston, TX

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed Analysi	Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B		MCL SV	V8260B Units: ug/L	-
1,1,1,2-Tetrachloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1,1-Trichloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1,2,2-Tetrachloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1,2-Trichloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1-Dichloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1-Dichloroethene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,1-Dichloropropene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2,3-Trichlorobenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2,3-Trichloropropane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2,4-Trichlorobenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2,4-Trimethylbenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2-Dibromo-3-chloropropane	ND	5	1	07/08/10 14:36 LU_L	5535244
1,2-Dibromoethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2-Dichlorobenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2-Dichloroethane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,2-Dichloropropane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,3,5-Trimethylbenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,3-Butadiene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,3-Dichlorobenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,3-Dichloropropane	ND	1	1	07/08/10 14:36 LU_L	5535244
1,4-Dichlorobenzene	ND	1	1	07/08/10 14:36 LU_L	5535244
1,4-Dioxane	ND	50	1	07/08/10 14:36 LU_L	5535244
2,2,4-Trimethylpentane	ND	1	1	07/08/10 14:36 LU_L	5535244
2,2-Dichloropropane	ND	1	1	07/08/10 14:36 LU_L	5535244
2-Butanone	ND	12	1	07/08/10 14:36 LU_L	5535244
2-Chloroethyl vinyl ether	ND J	5	1	07/08/10 14:36 LU_L	5535244
2-Chlorotoluene	ND	1	1	07/08/10 14:36 LU_L	5535244
2-Hexanone	ND	12	1	07/08/10 14:36 LU_L	5535244
2-Nitropropane	ND	5	1	07/08/10 14:36 LU_L	5535244
4-Chlorotoluene	ND	1	1	07/08/10 14:36 LU_L	5535244
4-Isopropyltoluene	ND	1	1	07/08/10 14:36 LU_L	5535244
4-Methyl-2-pentanone	ND	12	1	07/08/10 14:36 LU_L	5535244
Acetone	ND	12	1	07/08/10 14:36 LU_L	5535244
Acetonitrile	ND	25	1	07/08/10 14:36 LU_L	5535244
Acrylonitrile	ND	5	1	07/08/10 14:36 LU_L	5535244
Allyl chloride	ND	1	1	07/08/10 14:36 LU_L	5535244
alpha-Methylstyrene	ND	1	1	07/08/10 14:36 LU_L	5535244
Benzene	ND	1	1	07/08/10 14:36 LU_L	5535244
Benzyl chloride	ND	5	1	07/08/10 14:36 LU_L	5535244

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10060878 Page 9 7/13/2010 11:50:49 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

			Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bromobenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Bromochloromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Bromodichloromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Bromoform	ND			1	1	07/08/10 14:36	LU_L	5535244
Bromomethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Butyl Acetate	ND			1	1	07/08/10 14:36	LU_L	5535244
Carbon disulfide	ND			5	1	07/08/10 14:36	LU_L	5535244
Carbon tetrachloride	ND			1	1	07/08/10 14:36	LU_L	5535244
Chlorobenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Chloroethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Chloroform	ND			1	1	07/08/10 14:36	LU_L	5535244
Chloromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Chloroprene	ND			1	1	07/08/10 14:36	LU_L	5535244
Crotonaldehyde	ND			25	1	07/08/10 14:36	LU_L	5535244
Cyclohexane	ND			1	1	07/08/10 14:36	LU_L	5535244
Cyclohexanone	ND			25	1	07/08/10 14:36	LU_L	5535244
Dibromochloromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Dibromomethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Dichlorodifluoromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Dicyclopentadiene	ND			1	1	07/08/10 14:36	LU_L	5535244
Diisopropyl Ether	ND			1	1	07/08/10 14:36	LU_L	5535244
Epichlorohydrin	ND			25	1	07/08/10 14:36	LU_L	5535244
Ethyl Acetate	ND			5	1	07/08/10 14:36	LU_L	5535244
Ethyl Cyanide	ND			5	1	07/08/10 14:36	LU_L	5535244
Ethyl Ether	ND			1	1	07/08/10 14:36	LU_L	5535244
Ethyl methacrylate	ND			1	1	07/08/10 14:36	LU_L	5535244
Ethylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Ethylene oxide	ND			25	1	07/08/10 14:36	LU_L	5535244
Freon-113	ND			5	1	07/08/10 14:36	LU_L	5535244
Hexachlorobutadiene	ND			1	1	07/08/10 14:36	LU_L	5535244
Hexane	ND			1	1	07/08/10 14:36	LU_L	5535244
Iodomethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Isobutyl alcohol	ND			50	1	07/08/10 14:36	LU_L	5535244
Isopropylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Methacrylonitrile	ND			1	1	07/08/10 14:36	LU_L	5535244
Methyl acetate	ND			5	1	07/08/10 14:36	LU_L	5535244
Methyl methacrylate	ND			1	1	07/08/10 14:36	LU_L	5535244
Methyl tert-butyl ether	ND			1	1	07/08/10 14:36	LU_L	5535244
Methylcyclohexane	ND			1	1	07/08/10 14:36	LU_L	5535244
Methylene chloride	ND			1	1	07/08/10 14:36	LU_L	5535244

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV1 Collected: 06/28/2010 11:01 SPL Sample ID: 10060878-01

			Site:	Galve	ston, TX			
Analyses/Method	Result	QUAL	Rep.	Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Naphthalene	ND			1	1	07/08/10 14:36	LU_L	5535244
n-Butylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
n-Propylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
p-Diethylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
sec-Butylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Styrene	ND			1	1	07/08/10 14:36	LU_L	5535244
t-Butyl alcohol	ND			25	1	07/08/10 14:36	LU_L	5535244
tert-Amyl methyl ether	ND			1	1	07/08/10 14:36	LU_L	5535244
tert-Butyl ethyl ether	ND			1	1	07/08/10 14:36	LU_L	5535244
tert-Butylbenzene	ND			1	1	07/08/10 14:36	LU_L	5535244
Tetrachloroethene	ND			1	1	07/08/10 14:36	LU_L	5535244
Tetrahydrofuran	ND			1	1	07/08/10 14:36	LU_L	5535244
Toluene	ND			1	1	07/08/10 14:36	LU_L	5535244
trans-1,4-Dichloro-2-Butene	ND			25	1	07/08/10 14:36	LU_L	5535244
Trichloroethene	ND			1	1	07/08/10 14:36	LU_L	5535244
Trichlorofluoromethane	ND			1	1	07/08/10 14:36	LU_L	5535244
Vinyl acetate	ND			1	1	07/08/10 14:36	LU_L	5535244
Vinyl chloride	ND			1	1	07/08/10 14:36	LU_L	5535244
cis-1,2-Dichloroethene	ND			1	1	07/08/10 14:36	LU_L	5535244
cis-1,3-Dichloropropene	ND			1	1	07/08/10 14:36	LU_L	5535244
m,p-Xylene	ND			2	1	07/08/10 14:36	LU_L	5535244
o-Xylene	ND			1	1	07/08/10 14:36	LU_L	5535244
trans-1,2-Dichloroethene	ND			1	1	07/08/10 14:36	LU_L	5535244
trans-1,3-Dichloropropene	ND			1	1	07/08/10 14:36	LU_L	5535244
1,2-Dichloroethene (total)	ND			1	1	07/08/10 14:36	LU_L	5535244
Xylenes,Total	ND			1	1	07/08/10 14:36	LU_L	5535244
1,3-Dichloropropene, Total	ND			1	1	07/08/10 14:36	LU_L	5535244
Surr: 1,2-Dichloroethane-d4	90.8		% 70	0-130	1	07/08/10 14:36	LU_L	5535244
Surr: 4-Bromofluorobenzene	100		% 7	4-125	1	07/08/10 14:36	LU_L	5535244
Surr: Toluene-d8	96.2		% 8	2-118	1	07/08/10 14:36	LU_L	5535244

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Temperature (oC)

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

06/28/10 15:30 PAC

5526246

Client Sample ID:GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

				Site: Gal	veston, 1	ГХ			
Analyses/Method		Result	QUAL	Rep.Limit	[Dil. Facto	r Date Anal	yzed Analyst	Seq. #
BIOCHEMICAL OX	YGEN DEMAND	- 5 DAY	S		MCL	S	M5210 B	Units: mg/L	
Biochemical Oxygen [Demand	3.79		2		1	06/28/10	16:00 PAC	5530971
CARBONACEOUS	BIOCHEMICAL	OXYGEN	DEMAND) - 5 DAY	MCL	S	M5210 B	Units: mg/L	
Biochemical Oxygen [Carbonaceous	Demand,	2.48		2		1	06/28/10	16:00 PAC	5530978
CHEMICAL OXYGE	N DEMAND				MCL	S	M5220 C	Units: mg/L	
Chemical Oxygen Der	mand	289		6		2	06/29/10	11:30 PAC	5527046
IGNITABILITY					MCL	S	W1010A	Units: °F	
Ignitability		>212		70		1	06/29/10	14:30 EB1	5527278
OIL AND GREASE	BY METHOD 16	64			MCL		1664A	Units: mg/L	
Oil and Grease		ND		5		1	07/09/10	15:10 EAG	5535731
Prep Method	Prep Date		Prep Initials	Prep Factor					
	07/09/2010 11	:45	-	1.00					
PH - WATER					MCL	S	W9040C	Units: pH Un	its
рН		8.49		0.1		1	06/28/10	15:30 PAC	5526246

0.1

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

20.6

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

Site: Galveston, TX

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 8270C		MCL SV	V8270C Ur	nits: ug/L	
1,2,4,5-Tetrachlorobenzene	ND	10	1	07/02/10 13:50	S_G	5532087
1,2,4-Trichlorobenzene	ND	5	1	07/02/10 13:50	S_G	5532087
1,2-Dichlorobenzene	ND	5	1	07/02/10 13:50	S_G	5532087
1,2-Diphenylhydrazine	ND	10	1	07/02/10 13:50	S_G	5532087
1,3,5-Trinitrobenzene	ND	10	1	07/02/10 13:50	S_G	5532087
1,3-Dichlorobenzene	ND	5	1	07/02/10 13:50	S_G	5532087
1,3-Dinitrobenzene	ND	10	1	07/02/10 13:50	S_G	5532087
1,4-Dichlorobenzene	ND	5	1	07/02/10 13:50	S_G	5532087
1,4-Napthoquinone	ND	50	1	07/02/10 13:50	S_G	5532087
1-Chloronaphthalene	ND	5	1	07/02/10 13:50	S_G	5532087
1-Methylnaphthalene	ND	5	1	07/02/10 13:50	S_G	5532087
1-Naphthylamine	ND	5	1	07/02/10 13:50	S_G	5532087
2,3,4,6-Tetrachlorophenol	ND	10	1	07/02/10 13:50	S_G	5532087
2,4,5-Trichlorophenol	ND	10	1	07/02/10 13:50	S_G	5532087
2,4,6-Trichlorophenol	ND	5	1	07/02/10 13:50	S_G	5532087
2,4-Dichlorophenol	ND	5	1	07/02/10 13:50	S_G	5532087
2,4-Dimethylphenol	ND	5	1	07/02/10 13:50	S_G	5532087
2,4-Dinitrophenol	ND	25	1	07/02/10 13:50	S_G	5532087
2,4-Dinitrotoluene	ND	5	1	07/02/10 13:50	S_G	5532087
2,6-Dichlorophenol	ND	50	1	07/02/10 13:50	S_G	5532087
2,6-Dimethylphenol	ND	5	1	07/02/10 13:50	S_G	5532087
2,6-Dinitrotoluene	ND	5	1	07/02/10 13:50	S_G	5532087
2-Acetylaminofluorene	ND	10	1	07/02/10 13:50	S_G	5532087
2-Chloronaphthalene	ND	5	1	07/02/10 13:50	S_G	5532087
2-Chlorophenol	ND	5	1	07/02/10 13:50	S_G	5532087
2-Methylnaphthalene	ND	5	1	07/02/10 13:50	S_G	5532087
2-Naphthylamine	ND	5	1	07/02/10 13:50	S_G	5532087
2-Nitroaniline	ND	25	1	07/02/10 13:50	S_G	5532087
2-Nitrophenol	ND	5	1	07/02/10 13:50	S_G	5532087
2-Picoline	ND	5	1	07/02/10 13:50	S_G	5532087
2-Toluidine	ND	25	1	07/02/10 13:50	S_G	5532087
3,3´-Dichlorobenzidine	ND	10	1	07/02/10 13:50	S_G	5532087
3,3´-Dimethylbenzidine	ND	25	1	07/02/10 13:50	S_G	5532087
3-Methylcholanthrene	ND	5	1	07/02/10 13:50	S_G	5532087
3-Nitroaniline	ND	25	1	07/02/10 13:50	S_G	5532087
4,6-Dinitro-2-methylphenol	ND	25	1	07/02/10 13:50	S_G	5532087
4-Aminobiphenyl	ND	5	1	07/02/10 13:50	S_G	5532087
4-Bromophenyl phenyl ether	ND	5	1	07/02/10 13:50	S_G	5532087
4-Chloro-3-methylphenol	ND	5	1	07/02/10 13:50	SG	5532087

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

TNTC - Too numerous to count

E - Estimated Value exceeds calibration curve

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

			Site:	Galvestor	n, TX			
Analyses/Method	Result	QUAL	Rep.L	.imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
4-Chloroaniline	ND			5	1	07/02/10 13:50	S_G	5532087
4-Chlorophenyl phenyl ether	ND			5	1	07/02/10 13:50	S_G	5532087
4-Nitroaniline	ND			25	1	07/02/10 13:50	S_G	5532087
4-Nitrophenol	ND			25	1	07/02/10 13:50	S_G	5532087
4-Nitroquinoline-1-oxide	ND			10	1	07/02/10 13:50	S_G	5532087
5-Nitro-o-toluidine	ND			5	1	07/02/10 13:50	S_G	5532087
7,12-Dimethylbenz(a)anthracene	ND			5	1	07/02/10 13:50	S_G	5532087
Acenaphthene	ND			5	1	07/02/10 13:50	S_G	5532087
Acenaphthylene	ND			5	1	07/02/10 13:50	S_G	5532087
Acetophenone	ND			5	1	07/02/10 13:50	S_G	5532087
Aniline	ND			5	1	07/02/10 13:50	S_G	5532087
Anthracene	ND			5	1	07/02/10 13:50	S_G	5532087
Aramite	ND			50	1	07/02/10 13:50	S_G	5532087
Benz(a)anthracene	ND			5	1	07/02/10 13:50	S_G	5532087
Benzidine	ND			20	1	07/02/10 13:50	S_G	5532087
Benzo(a)pyrene	ND			5	1	07/02/10 13:50	S_G	5532087
Benzo(b)fluoranthene	ND			5	1	07/02/10 13:50	S_G	5532087
Benzo(g,h,i)perylene	ND			5	1	07/02/10 13:50	S_G	5532087
Benzo(k)fluoranthene	ND			5	1	07/02/10 13:50	S_G	5532087
Benzoic acid	ND			25	1	07/02/10 13:50	S_G	5532087
Benzyl alcohol	ND			5	1	07/02/10 13:50	S_G	5532087
Biphenyl	ND			50	1	07/02/10 13:50	S_G	5532087
Bis(2-chloroethoxy)methane	ND			5	1	07/02/10 13:50	S_G	5532087
Bis(2-chloroethyl)ether	ND			5	1	07/02/10 13:50	S_G	5532087
Bis(2-chloroisopropyl)ether	ND			5	1	07/02/10 13:50	S_G	5532087
Bis(2-ethylhexyl)phthalate	ND			5	1	07/02/10 13:50	S_G	5532087
Butyl benzyl phthalate	ND			5	1	07/02/10 13:50	S_G	5532087
Caprolactam	ND			50	1	07/02/10 13:50	S_G	5532087
Carbazole	ND			5	1	07/02/10 13:50	S_G	5532087
Chlorobenzilate	ND			25	1	07/02/10 13:50	S_G	5532087
Chrysene	ND			5	1	07/02/10 13:50	S_G	5532087
Dibenz(a,h)acridine	ND			25	1	07/02/10 13:50	S_G	5532087
Dibenz(a,h)anthracene	ND			5	1	07/02/10 13:50	S_G	5532087
Dibenz(a,j)acridine	ND			5	1	07/02/10 13:50	S_G	5532087
Dibenzofuran	ND			5	1	07/02/10 13:50	S_G	5532087
Diethyl phthalate	ND			5	1	07/02/10 13:50	S_G	5532087
Dimethyl phthalate	ND			5	1	07/02/10 13:50	S_G	5532087
Di-n-butyl phthalate	ND			5	1	07/02/10 13:50	S_G	5532087
Di-n-octyl phthalate	ND			5	1	07/02/10 13:50		5532087
Dinoseb	ND			10	1	07/02/10 13:50	S_G	5532087

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

			Site:	Galveston,	TX			
Analyses/Method	Result	QUAL	Rep.Li	mit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Diphenyl oxide	ND			20	1	07/02/10 13:50	S_G	5532087
Diphenylamine	ND			10	1	07/02/10 13:50	S_G	5532087
Ethyl methanesulfonate	ND			10	1	07/02/10 13:50	S_G	5532087
Fluoranthene	ND			5	1	07/02/10 13:50	S_G	5532087
Fluorene	ND			5	1	07/02/10 13:50	S_G	5532087
Hexachlorobenzene	ND			5	1	07/02/10 13:50	S_G	5532087
Hexachlorobutadiene	ND			5	1	07/02/10 13:50	S_G	5532087
Hexachlorocyclopentadiene	ND			5	1	07/02/10 13:50	S_G	5532087
Hexachloroethane	ND			5	1	07/02/10 13:50	S_G	5532087
Hexachloropropene	ND			5	1	07/02/10 13:50	S_G	5532087
Indeno(1,2,3-cd)pyrene	ND			5	1	07/02/10 13:50	S_G	5532087
Isodrin	ND			5	1	07/02/10 13:50	S_G	5532087
Isophorone	ND			5	1	07/02/10 13:50	S_G	5532087
Isosafrole	ND			10	1	07/02/10 13:50	S_G	5532087
Methapyrilene	ND			5	1	07/02/10 13:50	S_G	5532087
Methyl methanesulfonate	ND			10	1	07/02/10 13:50	S_G	5532087
Methylchrysene	ND			50	1	07/02/10 13:50	S_G	5532087
Naphthalene	ND			5	1	07/02/10 13:50	S_G	5532087
Nitrobenzene	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosodiethylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosodimethylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitroso-di-n-butylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosodi-n-propylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosodiphenylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosomethylethylamine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosomorpholine	ND			25	1	07/02/10 13:50	S_G	5532087
N-Nitrosopiperidine	ND			5	1	07/02/10 13:50	S_G	5532087
N-Nitrosopyrrolidine	ND			5	1	07/02/10 13:50	S_G	5532087
Octachlorostyrene	ND			5	1	07/02/10 13:50	S_G	5532087
p-Dimethylaminoazobenzene	ND			25	1	07/02/10 13:50	S_G	5532087
Pentachlorobenzene	ND			5	1	07/02/10 13:50	S_G	5532087
Pentachloroethane	ND			10	1	07/02/10 13:50	S_G	5532087
Pentachloronitrobenzene	ND			10	1	07/02/10 13:50	S_G	5532087
Pentachlorophenol	ND			25	1	07/02/10 13:50	S_G	5532087
Phenacetin	ND			5	1	07/02/10 13:50	S_G	5532087
Phenanthrene	ND			5	1	07/02/10 13:50	S_G	5532087
Phenol	ND			5	1	07/02/10 13:50	S_G	5532087
p-Phenylenediamine	ND			50	1	07/02/10 13:50	S_G	5532087
Pronamide	ND			10	1	07/02/10 13:50	S_G	5532087
Pyrene	ND			5	1	07/02/10 13:50	S_G	5532087

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

			Sit	e: Galves	ston, TX			
Analyses/Method	Result	QUAL	Re	ep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Pyridine	ND			5	1	07/02/10 13:50	S_G	5532087
Quinoline	ND			50	1	07/02/10 13:50	S_G	5532087
Safrole	ND			5	1	07/02/10 13:50	S_G	5532087
2-Methylphenol	ND			5	1	07/02/10 13:50	S_G	5532087
3 & 4-Methylphenol	ND			5	1	07/02/10 13:50	S_G	5532087
Cresols, Total	ND			5	1	07/02/10 13:50	S_G	5532087
Surr: 2,4,6-Tribromophenol	85.2		%	25-154	1	07/02/10 13:50	S_G	5532087
Surr: 2-Fluorobiphenyl	80.8		%	45-108	1	07/02/10 13:50	S_G	5532087
Surr: 2-Fluorophenol	68.5		%	18-113	1	07/02/10 13:50	S_G	5532087
Surr: Nitrobenzene-d5	83.2		%	41-113	1	07/02/10 13:50	S_G	5532087
Surr: Phenol-d5	54.0		%	10-113	1	07/02/10 13:50	S_G	5532087
Surr: Terphenyl-d14	89.2		%	43-122	1	07/02/10 13:50	S_G	5532087

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	06/30/2010 11:29	N_M	1.00

TPH TEXAS 1005			MCL	TX1005	Units: mg/L	
C6-C12	ND	4.9	1	07/03/10	7:04 NW	5531633
>C12-C28	ND	4.9	1	07/03/10	7:04 NW	5531633
>C28-C35	ND	4.9	1	07/03/10	7:04 NW	5531633
Total TPH (C6-C35)	ND	4.9	1	07/03/10	7:04 NW	5531633
Surr: 1-Chlorooctane	103	% 70-130	1	07/03/10	7:04 NW	5531633
Surr: o-Terphenyl	95.3	% 70-130	1	07/03/10	7:04 NW	5531633

Prep Method	Prep Date	Prep Initials	Prep Factor
TX1005	07/02/2010 11:26	LSB	0.98

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

Site: Galveston, TX

Analyses/Method	Result QUA	L Rep.Limit	Dil. Factor	Date Analyzed Analy	st Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B		MCL SV	V8260B Units: ug	/L
1,1,1,2-Tetrachloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1,1-Trichloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1,2,2-Tetrachloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1,2-Trichloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1-Dichloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1-Dichloroethene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,1-Dichloropropene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2,3-Trichlorobenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2,3-Trichloropropane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2,4-Trichlorobenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2,4-Trimethylbenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2-Dibromo-3-chloropropane	ND	5	1	07/08/10 15:02 LU_L	5535245
1,2-Dibromoethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2-Dichlorobenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2-Dichloroethane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,2-Dichloropropane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,3,5-Trimethylbenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,3-Butadiene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,3-Dichlorobenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,3-Dichloropropane	ND	1	1	07/08/10 15:02 LU_L	5535245
1,4-Dichlorobenzene	ND	1	1	07/08/10 15:02 LU_L	5535245
1,4-Dioxane	ND	50	1	07/08/10 15:02 LU_L	5535245
2,2,4-Trimethylpentane	ND	1	1	07/08/10 15:02 LU_L	5535245
2,2-Dichloropropane	ND	1	1	07/08/10 15:02 LU_L	5535245
2-Butanone	ND	12	1	07/08/10 15:02 LU_L	5535245
2-Chloroethyl vinyl ether	ND J	5	1	07/08/10 15:02 LU_L	5535245
2-Chlorotoluene	ND	1	1	07/08/10 15:02 LU_L	5535245
2-Hexanone	ND	12	1	07/08/10 15:02 LU_L	5535245
2-Nitropropane	ND	5	1	07/08/10 15:02 LU_L	5535245
4-Chlorotoluene	ND	1	1	07/08/10 15:02 LU_L	5535245
4-Isopropyltoluene	ND	1	1	07/08/10 15:02 LU_L	5535245
4-Methyl-2-pentanone	ND	12	1	07/08/10 15:02 LU_L	5535245
Acetone	ND	12	1	07/08/10 15:02 LU_L	5535245
Acetonitrile	ND	25	1	07/08/10 15:02 LU_L	5535245
Acrylonitrile	ND	5	1	07/08/10 15:02 LU_L	5535245
Allyl chloride	ND	1	1	07/08/10 15:02 LU_L	5535245
alpha-Methylstyrene	ND	1	1	07/08/10 15:02 LU_L	5535245
Benzene	ND	1	1	07/08/10 15:02 LU_L	5535245
Benzyl chloride	ND	5	1	07/08/10 15:02 LU_L	5535245

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

			Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bromobenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Bromochloromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Bromodichloromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Bromoform	ND			1	1	07/08/10 15:02	LU_L	5535245
Bromomethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Butyl Acetate	ND			1	1	07/08/10 15:02	LU_L	5535245
Carbon disulfide	ND			5	1	07/08/10 15:02	LU_L	5535245
Carbon tetrachloride	ND			1	1	07/08/10 15:02	LU_L	5535245
Chlorobenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Chloroethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Chloroform	ND			1	1	07/08/10 15:02	LU_L	5535245
Chloromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Chloroprene	ND			1	1	07/08/10 15:02	LU_L	5535245
Crotonaldehyde	ND			25	1	07/08/10 15:02	LU_L	5535245
Cyclohexane	ND			1	1	07/08/10 15:02	LU_L	5535245
Cyclohexanone	ND			25	1	07/08/10 15:02	LU_L	5535245
Dibromochloromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Dibromomethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Dichlorodifluoromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Dicyclopentadiene	ND			1	1	07/08/10 15:02	LU_L	5535245
Diisopropyl Ether	ND			1	1	07/08/10 15:02	LU_L	5535245
Epichlorohydrin	ND			25	1	07/08/10 15:02	LU_L	5535245
Ethyl Acetate	ND			5	1	07/08/10 15:02	LU_L	5535245
Ethyl Cyanide	ND			5	1	07/08/10 15:02	LU_L	5535245
Ethyl Ether	ND			1	1	07/08/10 15:02	LU_L	5535245
Ethyl methacrylate	ND			1	1	07/08/10 15:02	LU_L	5535245
Ethylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Ethylene oxide	ND			25	1	07/08/10 15:02	LU_L	5535245
Freon-113	ND			5	1	07/08/10 15:02	LU_L	5535245
Hexachlorobutadiene	ND			1	1	07/08/10 15:02	LU_L	5535245
Hexane	ND			1	1	07/08/10 15:02	LU_L	5535245
Iodomethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Isobutyl alcohol	ND			50	1	07/08/10 15:02	LU_L	5535245
Isopropylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Methacrylonitrile	ND			1	1	07/08/10 15:02	LU_L	5535245
Methyl acetate	ND			5	1	07/08/10 15:02	LU_L	5535245
Methyl methacrylate	ND			1	1	07/08/10 15:02	LU_L	5535245
Methyl tert-butyl ether	ND			1	1	07/08/10 15:02	LU_L	5535245
Methylcyclohexane	ND			1	1	07/08/10 15:02	LU_L	5535245
Methylene chloride	ND			1	1	07/08/10 15:02	LU_L	5535245

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV2 Collected: 06/28/2010 11:50 SPL Sample ID: 10060878-02

			Site:	Galve	ston, TX			
Analyses/Method	Result	QUAL	Rep.	Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Naphthalene	ND			1	1	07/08/10 15:02	LU_L	5535245
n-Butylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
n-Propylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
p-Diethylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
sec-Butylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Styrene	ND			1	1	07/08/10 15:02	LU_L	5535245
t-Butyl alcohol	ND			25	1	07/08/10 15:02	LU_L	5535245
tert-Amyl methyl ether	ND			1	1	07/08/10 15:02	LU_L	5535245
tert-Butyl ethyl ether	ND			1	1	07/08/10 15:02	LU_L	5535245
tert-Butylbenzene	ND			1	1	07/08/10 15:02	LU_L	5535245
Tetrachloroethene	ND			1	1	07/08/10 15:02	LU_L	5535245
Tetrahydrofuran	ND			1	1	07/08/10 15:02	LU_L	5535245
Toluene	ND			1	1	07/08/10 15:02	LU_L	5535245
trans-1,4-Dichloro-2-Butene	ND			25	1	07/08/10 15:02	LU_L	5535245
Trichloroethene	ND			1	1	07/08/10 15:02	LU_L	5535245
Trichlorofluoromethane	ND			1	1	07/08/10 15:02	LU_L	5535245
Vinyl acetate	ND			1	1	07/08/10 15:02	LU_L	5535245
Vinyl chloride	ND			1	1	07/08/10 15:02	LU_L	5535245
cis-1,2-Dichloroethene	ND			1	1	07/08/10 15:02	LU_L	5535245
cis-1,3-Dichloropropene	ND			1	1	07/08/10 15:02	LU_L	5535245
m,p-Xylene	ND			2	1	07/08/10 15:02	LU_L	5535245
o-Xylene	ND			1	1	07/08/10 15:02	LU_L	5535245
trans-1,2-Dichloroethene	ND			1	1	07/08/10 15:02	LU_L	5535245
trans-1,3-Dichloropropene	ND			1	1	07/08/10 15:02	LU_L	5535245
1,2-Dichloroethene (total)	ND			1	1	07/08/10 15:02	LU_L	5535245
Xylenes,Total	ND			1	1	07/08/10 15:02	LU_L	5535245
1,3-Dichloropropene, Total	ND			1	1	07/08/10 15:02	LU_L	5535245
Surr: 1,2-Dichloroethane-d4	83.7		% 70	0-130	1	07/08/10 15:02	LU_L	5535245
Surr: 4-Bromofluorobenzene	95.0		% 74	4-125	1	07/08/10 15:02	LU_L	5535245
Surr: Toluene-d8	95.4		% 82	2-118	1	07/08/10 15:02	LU_L	5535245

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Oil and Grease by Method 1664 WorkOrder: 10060878
Method: 1664A Lab Batch ID: R304408

Method Blank

Samples in Analytical Batch:

RunID: EX_100709B-5535725 Units: mg/L Lab Sample ID Client Sample ID

Analysis Date: 07/09/2010 15:10 Analyst: EAG 10060878-01I GLV1
Preparation Date: 07/09/2010 11:45 Prep By: Method: 10060878-02I GLV2

Analyte	Result	Rep Limit
Oil and Grease	ND	5.0

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: EX_100709B-5535726 Units: mg/L Analysis Date: 07/09/2010 15:10 Analyst: EAG

Preparation Date: 07/09/2010 11:45 Prep By: Method:

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Oil and Grease	40.0	38.1	95.2	40.0	39.1	97.8	2.6	18	78	114

Matrix Spike (MS)

Sample Spiked: H1007025100

 RunID:
 EX_100709B-5535734
 Units:
 mg/L

 Analysis Date:
 07/09/2010 15:10
 Analyst:
 EAG

Preparation Date: 07/09/2010 11:45 Prep By: Method:

Analyte	Sample Result	Spike Added	MS Result	MS % Recovery	-	High Limit
Oil and Grease	ND	40	38.2	95.5	78	114

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10060878

 Method:
 TX1005
 Lab Batch ID:
 100762

Method Blank Samples in Analytical Batch:

RunID: HP_B_100703A-5531629 Units: mg/L <u>Lab Sample ID</u> <u>Client Sample ID</u>

Analysis Date: 07/03/2010 6:16 Analyst: NW 10060878-01C GLV1

Preparation Date: 07/02/2010 11:26 Prep By: LSB Method: TX1005 10060878-02C GLV2

Analyte Result Rep Limit >C12-C28 ND 5.0 >C28-C35 ND 5.0 C6-C12 ND 5.0 Total TPH (C6-C35) ND 5.0 Surr: 1-Chlorooctane 104.6 70-130 Surr: o-Terphenyl 98.7 70-130

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: HP_B_100703A-5531655 Units: mg/L
Analysis Date: 07/03/2010 20:09 Analyst: NW

Preparation Date: 07/02/2010 11:26 Prep By: LSB Method: TX1005

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
>C12-C28	100	84.9	84.9	100	83.6	83.6	1.5	20	75	125
C6-C12	100	84.6	84.6	100	79.4	79.4	6.4	20	75	125
Total TPH (C6-C35)	200.0	169.5	84.74	200.0	163.0	81.49	3.9	20	75	125
Surr: 1-Chlorooctane	5.00	4.28	85.6	5.00	4.22	84.4	1.4	30	70	130
Surr: o-Terphenyl	5.00	4.38	87.6	5.00	4.32	86.4	1.4	30	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10060878-01

RunID: HP_B_100703A-5531631 Units: mg/L Analysis Date: 07/03/2010 6:40 Analyst: NW

Preparation Date: 07/02/2010 11:26 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
>C12-C28	ND	101	114	113	132	142	107	21.4 *	20	75	125
C6-C12	ND	101	85.5	84.4	132	102	77.2	17.9	20	75	125
Total TPH (C6-C35)	ND	202.6	199.5	98.62	264.9	244.0	92.11	19.93	20	75	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10060878

 Method:
 TX1005
 Lab Batch ID:
 100762

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10060878-01

RunID: HP_B_100703A-5531631 Units: mg/L Analysis Date: 07/03/2010 6:40 Analyst: NW

Preparation Date: 07/02/2010 11:26 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Surr: 1-Chlorooctane	ND	5.06	4.98	98.3	6.62	6.31	95.3	23.6 *	20	70	130
Surr: o-Terphenyl	ND	5.06	5.13	101	6.62	6.48	97.8	23.2 *	20	70	130

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

Method Blank

Samples in Analytical Batch:

 RunID:
 R_100701C-5530565
 Units:
 ug/L
 Lab Sample ID
 Client Sample ID

Analysis Date: 07/01/2010 17:58 Analyst: GY 10060878-01A GLV1
Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C 10060878-02A GLV2

Analyte	Result	Rep Limit
1,2,4,5-Tetrachlorobenzene	ND	10
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3,5-Trinitrobenzene	ND	10
1,3-Dichlorobenzene	ND	5.0
1,3-Dinitrobenzene	ND	10
1,4-Dichlorobenzene	ND	5.0
1,4-Napthoquinone	ND	50
1-Chloronaphthalene	ND	5.0
1-Methylnaphthalene	ND	5.0
1-Naphthylamine	ND	5.0
2,3,4,6-Tetrachlorophenol	ND	10
2,4,5-Trichlorophenol	ND	10
2,4,6-Trichlorophenol	ND	5.0
2,4-Dichlorophenol	ND	5.0
2,4-Dimethylphenol	ND	5.0
2,4-Dinitrophenol	ND	25
2,4-Dinitrotoluene	ND	5.0
2,6-Dichlorophenol	ND	50
2,6-Dimethylphenol	ND	5.0
2,6-Dinitrotoluene	ND	5.0
2-Acetylaminofluorene	ND	10
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	5.0
2-Methylnaphthalene	ND	5.0
2-Naphthylamine	ND	5.0
2-Nitroaniline	ND	25
2-Nitrophenol	ND	5.0
2-Picoline	ND	5.0
2-Toluidine	ND	25
3,3´-Dichlorobenzidine	ND	10
3,3´-Dimethylbenzidine	ND	25
3-Methylcholanthrene	ND	5.0
3-Nitroaniline	ND	25
4,6-Dinitro-2-methylphenol	ND	25
4-Aminobiphenyl	ND	5.0
4-Bromophenyl phenyl ether	ND	5.0
4-Chloro-3-methylphenol	ND	5.0
4-Chloroaniline	ND	5.0
4-Chlorophenyl phenyl ether	ND	5.0
4-Nitroaniline	ND	25
4-Nitrophenol	ND	25
4-Nitroquinoline-1-oxide	ND	10
5-Nitro-o-toluidine	ND	5.0
7,12-Dimethylbenz(a)anthracene	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878 Method: SW8270C Lab Batch ID: 100698

Method Blank

RunID: R_100701C-5530565 Units: ug/L Analysis Date: 07/01/2010 17:58 Analyst: GΥ

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	Result	Rep Limit
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Acetophenone	ND	5.0
Aniline	ND	5.0
Anthracene	ND	5.0
Aramite	ND	50
Benz(a)anthracene	ND	5.0
Benzidine	ND	20
Benzo(a)pyrene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzoic acid	ND	25
Benzyl alcohol	ND	5.0
Biphenyl	ND	50
Bis(2-chloroethoxy)methane	ND	5.0
Bis(2-chloroethyl)ether	ND	5.0
Bis(2-chloroisopropyl)ether	ND	5.0
Bis(2-ethylhexyl)phthalate	ND	5.0
Butyl benzyl phthalate	ND	5.0
Caprolactam	ND	50
Carbazole	ND	5.0
Chlorobenzilate	ND	25
Chrysene	ND	5.0
Dibenz(a,h)acridine	ND	25
Dibenz(a,h)anthracene	ND	5.0
Dibenz(a,j)acridine	ND	5.0
Dibenzofuran	ND	5.0
Diethyl phthalate	ND	5.0
Dimethyl phthalate	ND	5.0
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Dinoseb	ND	10
Diphenyl oxide	ND	20
Diphenylamine	ND	10
Ethyl methanesulfonate	ND	10
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Hexachloropropene	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isodrin	ND	5.0
Isophorone	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

Method Blank

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	Result	Rep Limit
Isosafrole	ND	10
Methapyrilene	ND	5.0
Methyl methanesulfonate	ND	10
Methylchrysene	ND	50
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodiethylamine	ND	5.0
N-Nitrosodimethylamine	ND	5.0
N-Nitroso-di-n-butylamine	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
N-Nitrosomethylethylamine	ND	5.0
N-Nitrosomorpholine	ND	25
N-Nitrosopiperidine	ND	5.0
N-Nitrosopyrrolidine	ND	5.0
Octachlorostyrene	ND	5.0
p-Dimethylaminoazobenzene	ND	25
Pentachlorobenzene	ND	5.0
Pentachloroethane	ND	10
Pentachloronitrobenzene	ND	10
Pentachlorophenol	ND	25
Phenacetin	ND	5.0
Phenanthrene	ND	5.0
Phenol	ND	5.0
p-Phenylenediamine	ND	50
Pronamide	ND	10
Pyrene	ND	5.0
Pyridine	ND	5.0
Quinoline	ND	50
Safrole	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Cresols, Total	ND	5.0
Surr: 2,4,6-Tribromophenol	105.6	25-154
Surr: 2-Fluorobiphenyl	79.6	45-108
Surr: 2-Fluorophenol	73.6	18-113
Surr: Nitrobenzene-d5	80.8	41-113
Surr: Phenol-d5	58.4	10-113
Surr: Terphenyl-d14	95.4	43-122

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

RunID: R_100701C-5530566 Units: ug/L Analysis Date: 07/01/2010 18:32 Analyst: GY

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
1,2,4,5-Tetrachlorobenzene	25.0	23.4	93.6	25.0	24.1	96.4	2.9	30	53	110
1,2,4-Trichlorobenzene	25.0	23.6	94.4	25.0	23.8	95.2	0.8	30	52	109
1,2-Dichlorobenzene	25.0	22.2	88.8	25.0	22.4	89.6	0.9	30	50	109
1,2-Diphenylhydrazine	25.0	23.5	94.0	25.0	24.1	96.4	2.5	30	40	142
1,3,5-Trinitrobenzene	25.0	16.7	66.8	25.0	17.5	70.0	4.7	30	16	115
1,3-Dichlorobenzene	25.0	21.6	86.4	25.0	21.9	87.6	1.4	30	49	106
1,3-Dinitrobenzene	25.0	25.0	100	25.0	26.4	106	5.4	30	46	124
1,4-Dichlorobenzene	25.0	21.8	87.2	25.0	22.0	88.0	0.9	30	48	106
1,4-Napthoquinone	25.0	4.91	19.6	25.0	5.22	20.9	6.1	30	10	110
1-Chloronaphthalene	25.0	23.9	95.6	25.0	24.6	98.4	2.9	30	53	116
1-Methylnaphthalene	25.0	23.1	92.4	25.0	23.7	94.8	2.6	30	52	109
1-Naphthylamine	25.0	23.9	95.6	25.0	24.9	99.6	4.1	30	10	118
2,3,4,6-Tetrachlorophenol	25.0	26.1	104	25.0	26.9	108	3.0	30	45	118
2,4,5-Trichlorophenol	25.0	24.3	97.2	25.0	24.8	99.2	2.0	30	48	120
2,4,6-Trichlorophenol	25.0	24.4	97.6	25.0	25.3	101	3.6	30	38	150
2,4-Dichlorophenol	25.0	22.7	90.8	25.0	23.5	94.0	3.5	30	50	110
2,4-Dimethylphenol	25.0	23.1	92.4	25.0	23.6	94.4	2.1	30	50	120
2,4-Dinitrophenol	25.0	23.0	92.0	25.0	23.8	95.2	3.4	30	10	122
2,4-Dinitrotoluene	25.0	25.6	102	25.0	26.7	107	4.2	30	50	129
2,6-Dichlorophenol	25.0	24.2	96.8	25.0	24.8	99.2	2.4	30	52	114
2,6-Dimethylphenol	25.0	24.8	99.2	25.0	24.8	99.2	0.0	30	54	113
2,6-Dinitrotoluene	25.0	25.6	102	25.0	26.1	104	1.9	30	48	127
2-Acetylaminofluorene	25.0	24.9	99.6	25.0	26.4	106	5.8	30	45	131
2-Chloronaphthalene	25.0	24.4	97.6	25.0	25.0	100	2.4	30	52	118
2-Chlorophenol	25.0	23.5	94.0	25.0	23.7	94.8	0.8	30	50	115
2-Methylnaphthalene	25.0	23.6	94.4	25.0	24.1	96.4	2.1	30	52	116
2-Naphthylamine	25.0	18.3	73.2	25.0	19.1	76.4	4.3	30	10	101
2-Nitroaniline	25.0	22.2	88.8	25.0	23.6	94.4	6.1	30	43	127
2-Nitrophenol	25.0	26.3	105	25.0	26.7	107	1.5	30	48	114
2-Picoline	25.0	21.8	87.2	25.0	22.1	88.4	1.4	30	38	112
2-Toluidine	50.0	45.4	90.8	50.0	46.0	92.0	1.3	30	10	136
3,3´-Dichlorobenzidine	25.0	22.8	91.2	25.0	23.5	94.0	3.0	30	30	104
3,3´-Dimethylbenzidine	50.0	27.3	54.6	50.0	29.2	58.4	6.7	30	50	150
3-Methylcholanthrene	25.0	25.1	100	25.0	26.4	106	5.0	30	52	139
3-Nitroaniline	25.0	24.3	97.2	25.0	25.0	100	2.8	30	31	114

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: R_100701C-5530566 Units: ug/L Analysis Date: 07/01/2010 18:32 Analyst: GY

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
4,6-Dinitro-2-methylphenol	25.0	25.3	101	25.0	27.4	110	8.0			127
4-Aminobiphenyl	25.0	15.4	61.6	25.0	16.4	65.6	6.3			
4-Bromophenyl phenyl ether	25.0	25.7	103	25.0	26.3	105	2.3	30	53	121
4-Chloro-3-methylphenol	25.0	23.8	95.2	25.0	24.8	99.2	4.1	30	49	120
4-Chloroaniline	25.0	23.3	93.2	25.0	23.7	94.8	1.7	30	54	116
4-Chlorophenyl phenyl ether	25.0	25.5	102	25.0	25.6	102	0.4	30	54	116
4-Nitroaniline	25.0	23.3	93.2	25.0	24.2	96.8	3.8	30	41	118
4-Nitrophenol	25.0	17.4	69.6	25.0	19.0	76.0	8.8	30	21	130
4-Nitroquinoline-1-oxide	25.0	16.8	67.2	25.0	17.7	70.8	5.2	30	10	128
5-Nitro-o-toluidine	25.0	23.6	94.4	25.0	24.1	96.4 *	2.1	30	19	96
7,12-Dimethylbenz(a)anthracene	25.0	26.2	105	25.0	26.9	108	2.6	30	56	132
Acenaphthene	25.0	23.5	94.0	25.0	24.1	96.4	2.5	30	52	117
Acenaphthylene	25.0	23.8	95.2	25.0	24.3	97.2	2.1	30	53	122
Acetophenone	25.0	23.0	92.0	25.0	23.5	94.0	2.2	30	49	114
Aniline	50.0	42.0	84.0	50.0	42.2	84.4	0.5	30	47	106
Anthracene	25.0	24.2	96.8	25.0	25.0	100	3.3	30	49	126
Aramite	25.0	17.6	70.4	25.0	17.6	70.4	0.0	30	38	139
Benz(a)anthracene	25.0	24.2	96.8	25.0	24.8	99.2	2.4	30	53	121
Benzidine	250	187	74.8	250	194	77.6	3.7	30	10	133
Benzo(a)pyrene	25.0	20.4	81.6	25.0	20.5	82.0	0.5	30	47	100
Benzo(b)fluoranthene	25.0	22.0	88.0	25.0	23.1	92.4	4.9	30	52	113
Benzo(g,h,i)perylene	25.0	25.6	102	25.0	25.8	103	0.8	30	52	121
Benzo(k)fluoranthene	25.0	24.1	96.4	25.0	24.1	96.4	0.0	30	54	117
Benzoic acid	25.0	15.4	61.6	25.0	15.5	62.0	0.6	30	10	133
Benzyl alcohol	25.0	21.7	86.8	25.0	22.6	90.4	4.1	30	40	127
Biphenyl	25.0	23.5	94.0	25.0	24.1	96.4	2.5	30	52	116
Bis(2-chloroethoxy)methane	25.0	23.7	94.8	25.0	24.1	96.4	1.7	30	47	113
Bis(2-chloroethyl)ether	25.0	23.3	93.2	25.0	23.6	94.4	1.3	30	48	112
Bis(2-chloroisopropyl)ether	25.0	21.0	84.0	25.0	21.4	85.6	1.9	30	50	150
Bis(2-ethylhexyl)phthalate	25.0	23.2	92.8	25.0	23.9	95.6	3.0	30	42	139
Butyl benzyl phthalate	25.0	24.2	96.8	25.0	25.1	100	3.7	30	40	139
Caprolactam	25.0	19.2	76.8	25.0	20.6	82.4	7.0	30	36	126
Carbazole	25.0	23.6	94.4	25.0	24.2	96.8	2.5	30	47	123

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: R_100701C-5530566 Units: ug/L Analysis Date: 07/01/2010 18:32 Analyst: GY

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Chlorobenzilate	25.0	26.1	104	25.0	27.0	108	3.4		47	131
Chrysene	25.0	24.8	99.2	25.0	25.7	103	3.6	30	53	117
Dibenz(a,h)acridine	25.0	22.8	91.2	25.0	23.4	93.6	2.6	30	49	117
Dibenz(a,h)anthracene	25.0	24.2	96.8	25.0	25.0	100	3.3	30	49	120
Dibenz(a,j)acridine	25.0	24.9	99.6	25.0	25.7	103	3.2	30	46	125
Dibenzofuran	25.0	24.7	98.8	25.0	25.3	101	2.4	30	55	119
Diethyl phthalate	25.0	24.2	96.8	25.0	25.1	100	3.7	30	45	129
Dimethyl phthalate	25.0	24.5	98.0	25.0	25.2	101	2.8	30	52	122
Di-n-butyl phthalate	25.0	25.1	100	25.0	26.3	105	4.7	30	42	141
Di-n-octyl phthalate	25.0	22.4	89.6	25.0	22.3	89.2	0.4	30	40	135
Dinoseb	25.0	28.1	112	25.0	29.6	118	5.2	30	17	148
Diphenyl oxide	25.0	23.5	94.0	25.0	24.4	97.6	3.8	30	53	113
Diphenylamine	50.0	53.2	106	50.0	54.5	109	2.4	30	62	136
Ethyl methanesulfonate	25.0	21.9	87.6	25.0	22.0	88.0	0.5	30	45	117
Fluoranthene	25.0	24.8	99.2	25.0	25.6	102	3.2	30	49	132
Fluorene	25.0	24.1	96.4	25.0	24.6	98.4	2.1	30	54	119
Hexachlorobenzene	25.0	26.2	105	25.0	27.1	108	3.4	30	53	117
Hexachlorobutadiene	25.0	23.0	92.0	25.0	23.0	92.0	0.0	30	49	106
Hexachlorocyclopentadiene	25.0	16.7	66.8	25.0	17.5	70.0	4.7	30	17	105
Hexachloroethane	25.0	20.7	82.8	25.0	21.0	84.0	1.4	30	42	110
Hexachloropropene	25.0	23.3	93.2	25.0	23.9	95.6	2.5	30	46	113
Indeno(1,2,3-cd)pyrene	25.0	25.4	102	25.0	26.7	107	5.0	30	50	129
Isodrin	25.0	24.5	98.0	25.0	25.4	102	3.6	30	50	127
Isophorone	25.0	27.1	108	25.0	27.6	110	1.8	30	52	134
Isosafrole	50.0	65.6	131	50.0	67.6	135	3.0	30	50	150
Methapyrilene	25.0	20.4	81.6	25.0	21.4	85.6	4.8	30	20	126
Methyl methanesulfonate	25.0	18.2	72.8	25.0	18.6	74.4	2.2	30	40	117
Methylchrysene	25.0	25.4	102	25.0	26.3	105	3.5	30	52	124
Naphthalene	25.0	22.9	91.6	25.0	23.2	92.8	1.3	30	53	111
Nitrobenzene	25.0	22.7	90.8	25.0	23.3	93.2	2.6	30	47	116
N-Nitrosodiethylamine	25.0	22.2	88.8	25.0	23.3	93.2	4.8	30	47	109
N-Nitrosodimethylamine	25.0	22.0	88.0	25.0	22.1	88.4	0.5	30	32	121
N-Nitroso-di-n-butylamine	25.0	23.8	95.2	25.0	24.5	98.0	2.9	30	45	121

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10060878

Method: SW8270C Lab Batch ID: 100698

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: R_100701C-5530566 Units: ug/L Analysis Date: 07/01/2010 18:32 Analyst: GY

Preparation Date: 06/30/2010 11:29 Prep By: N_M Method: SW3510C

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
N-Nitrosodi-n-propylamine	25.0	22.6	90.4	25.0	23.1	92.4	2.2	30	47	118
N-Nitrosodiphenylamine	50.0	53.2	106	50.0	54.5	109	2.4	30	62	136
N-Nitrosomethylethylamine	25.0	21.9	87.6	25.0	22.6	90.4	3.1	30	10	135
N-Nitrosomorpholine	25.0	21.5	86.0	25.0	21.9	87.6	1.8	30	10	162
N-Nitrosopiperidine	25.0	23.5	94.0	25.0	23.6	94.4	0.4	30	50	112
N-Nitrosopyrrolidine	25.0	22.5	90.0	25.0	23.2	92.8	3.1	30	43	122
Octachlorostyrene	25.0	25.4	102	25.0	26.6	106	4.6	30	44	125
p-Dimethylaminoazobenzene	25.0	25.0	100	25.0	26.9	108	7.3	30	44	125
Pentachlorobenzene	25.0	25.1	100	25.0	26.1	104	3.9	30	55	113
Pentachloroethane	25.0	21.1	84.4	25.0	22.0	88.0	4.2	30	46	110
Pentachloronitrobenzene	25.0	26.4	106	25.0	27.7	111	4.8	30	46	142
Pentachlorophenol	25.0	24.2	96.8	25.0	25.5	102	5.2	30	44	102
Phenacetin	25.0	21.8	87.2	25.0	23.5	94.0	7.5	30	39	134
Phenanthrene	25.0	25.5	102	25.0	26.4	106	3.5	30	49	124
Phenol	25.0	24.9	99.6	25.0	25.0	100	0.4	30	37	128
p-Phenylenediamine	250	245	98.0	250	251	100	2.4	30	10	214
Pronamide	25.0	23.2	92.8	25.0	24.2	96.8	4.2	30	42	137
Pyrene	25.0	24.7	98.8	25.0	25.5	102	3.2	30	52	122
Pyridine	50.0	38.1	76.2	50.0	38.3	76.6	0.5	30	37	99
Quinoline	25.0	22.9	91.6	25.0	23.2	92.8	1.3	30	56	113
Safrole	25.0	25.3	101	25.0	26.2	105	3.5	30	56	120
2-Methylphenol	25.0	23.0	92.0	25.0	23.4	93.6	1.7	30	49	118
3 & 4-Methylphenol	25.0	22.6	90.4	25.0	23.2	92.8	2.6	30	44	132
Cresols, Total	50.0	45.6	91.2	50.0	46.6	93.2	2.2	30	44	132
Surr: 2,4,6-Tribromophenol	75.0	87.1	116	75.0	89.6	119	2.8	30	25	154
Surr: 2-Fluorobiphenyl	50.0	43.6	87.2	50.0	43.6	87.2	0.0	30	45	108
Surr: 2-Fluorophenol	75.0	58.8	78.4	75.0	59.2	78.9	0.7	30	18	113
Surr: Nitrobenzene-d5	50.0	43.2	86.4	50.0	42.9	85.8	0.7	30	41	113
Surr: Phenol-d5	75.0	46.1	61.5	75.0	45.8	61.1	0.7	30	10	113
Surr: Terphenyl-d14	50.0	45.2	90.4	50.0	45.7	91.4	1.1	30	43	122

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C

Method: SW8270C

WorkOrder: Lab Batch ID: 10060878 100698

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10060878 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

7/13/2010 11:51:01 AM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Volatile Organics by Method 8260B WorkOrder: 10060878 SW8260B Lab Batch ID: R304372

Method Blank

Samples in Analytical Batch:

RunID: K_100708B-5535243 Units: ug/L Analysis Date: 07/08/2010 12:20 Analyst: LU_L

Analysis:

Method:

Lab Sample ID **Client Sample ID** 10060878-01B GLV1 10060878-02B GLV2

Result	Rep Limit
ND	1.0
ND	5.0
ND	1.0
ND	50
ND	1.0
	1.0
ND	12
ND	5.0
ND	1.0
ND	12
ND	5.0
ND	1.0
ND	1.0
ND	12
ND	12
ND	25
ND	5.0
ND	1.0
ND	1.0
ND	1.0
ND	5.0
ND	1.0
	1.0
	1.0
ND	5.0
	ND

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Method Blank

Analyte	Result	Rep Limit
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	1.0
Chloroprene	ND	1.0
Crotonaldehyde	ND	25
Cyclohexane	ND	1.0
Cyclohexanone	ND	25
Dibromochloromethane	ND	1.0
Dibromomethane	ND	1.0
Dichlorodifluoromethane	ND	1.0
Dicyclopentadiene	ND	1.0
Diisopropyl Ether	ND	1.0
Epichlorohydrin	ND	25
Ethyl Acetate	ND	5.0
Ethyl Cyanide	ND	5.0
Ethyl Ether	ND	1.0
Ethyl methacrylate	ND	1.0
Ethylbenzene	ND	1.0
Ethylene oxide	ND	25
Freon-113	ND	5.0
Hexachlorobutadiene	ND	1.0
Hexane	ND	1.0
Iodomethane	ND	1.0
Isobutyl alcohol	ND	50
Isopropylbenzene	ND	1.0
Methacrylonitrile	ND	1.0
Methyl acetate	ND	5.0
Methyl methacrylate	ND	1.0
Methyl tert-butyl ether	ND	1.0
Methylcyclohexane	ND	1.0
Methylene chloride	ND	1.0
Naphthalene	ND	1.0
n-Butylbenzene	ND	1.0
n-Propylbenzene	ND	1.0
p-Diethylbenzene	ND	1.0
sec-Butylbenzene	ND	1.0
Styrene	ND	1.0
t-Butyl alcohol	ND	25
tert-Amyl methyl ether	ND	1.0
tert-Butyl ethyl ether	ND	1.0
tert-Butylbenzene	ND	1.0
Tetrachloroethene	ND	1.0
Tetrahydrofuran	ND	1.0
Toluene	ND	1.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Method Blank

Analyte	Result	Rep Limit
trans-1,4-Dichloro-2-Butene	ND	25
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	1.0
Vinyl acetate	ND	1.0
Vinyl chloride	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
1,2-Dichloroethene (total)	ND	1.0
1,3-Dichloropropene, Total	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	90.0	70-130
Surr: 4-Bromofluorobenzene	99.1	74-125
Surr: Toluene-d8	94.4	82-118

Laboratory Control Sample (LCS)

RunID: K_100708B-5535242 Units: ug/L Analysis Date: 07/08/2010 11:55 Analyst: LU_L

Analyte	Spike Result		Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20.0	18.0	89.8	71	128
1,1,1-Trichloroethane	20.0	17.2	86.1	61	135
1,1,2,2-Tetrachloroethane	20.0	18.6	93.0	60	133
1,1,2-Trichloroethane	20.0	19.2	95.9	77	127
1,1-Dichloroethane	20.0	17.9	89.4	68	132
1,1-Dichloroethene	20.0	18.5	92.4	65	134
1,1-Dichloropropene	20.0	17.0	85.2	68	126
1,2,3-Trichlorobenzene	20.0	18.3	91.3	36	154
1,2,3-Trichloropropane	20.0	18.5	92.7	38	153
1,2,4-Trichlorobenzene	20.0	16.6	82.9	69	144
1,2,4-Trimethylbenzene	20.0	17.1	85.4	64	128
1,2-Dibromo-3-chloropropane	20.0	19.5	97.6	44	141

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Laboratory Control Sample (LCS)

RunID: K_100708B-5535242 Units: ug/L
Analysis Date: 07/08/2010 11:55 Analyst: LU_L

Analyte	Added R		Percent Recovery	Lower Limit	Upper Limit
1,2-Dibromoethane	20.0	18.6	93.2	75	124
1,2-Dichlorobenzene	20.0	16.3	81.7	68	124
1,2-Dichloroethane	20.0	16.8	84.2	61	138
1,2-Dichloropropane	20.0	18.7	93.4	76	123
1,3,5-Trimethylbenzene	20.0	17.3	86.6	61	127
1,3-Butadiene	20.0	5.03	25.1	10	192
1,3-Dichlorobenzene	20.0	18.0	89.9	68	127
1,3-Dichloropropane	20.0	18.4	92.0	76	125
1,4-Dichlorobenzene	20.0	16.4	81.8	68	124
1,4-Dioxane	800	1040	129	24	172
2,2,4-Trimethylpentane	20.0	22.2	111	42	167
2,2-Dichloropropane	20.0	15.8	78.9	42	142
2-Butanone	20.0	22.3	111	22	183
2-Chloroethyl vinyl ether	20.0	8.57	42.8	10	179
2-Chlorotoluene	20.0	17.7	88.3	64	132
2-Hexanone	20.0	23.0	115	31	178
2-Nitropropane	20.0	42.1	211 *	10	176
4-Chlorotoluene	20.0	18.3	91.4	61	132
4-Isopropyltoluene	20.0	16.1	80.6	63	136
4-Methyl-2-pentanone	20.0	18.3	91.4	10	159
Acetone	20.0	27.9	140	10	200
Acetonitrile	200	251	126	29	169
Acrylonitrile	20.0	18.5	92.3	54	155
Allyl chloride	20.0	21.6	108	54	151
alpha-Methylstyrene	20.0	17.7	88.5	10	151
Benzene	20.0	18.0	90.1	74	123
Benzyl chloride	100	83.5	83.5	20	137
Bromobenzene	20.0	18.9	94.3	68	125
Bromochloromethane	20.0	17.1	85.4	71	124
Bromodichloromethane	20.0	20.1	101	72	128
Bromoform	20.0	21.5	107	60	128
Bromomethane	20.0	15.1	75.6	53	130
Butyl Acetate	20.0	17.2	85.8	60	140
Carbon disulfide	20.0	16.2	80.9	41	143

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Laboratory Control Sample (LCS)

RunID: K_100708B-5535242 Units: ug/L Analysis Date: 07/08/2010 11:55 Analyst: LU_L

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Carbon tetrachloride	20.0	18.6	92.9	59	142
Chlorobenzene	20.0	17.4	86.9	75	125
Chloroethane	20.0	18.2	91.1	60	134
Chloroform	20.0	17.8	89.2	71	127
Chloromethane	20.0	13.7	68.3	50	139
Chloroprene	20.0	15.6	78.1	60	140
Crotonaldehyde	100	122	122	11	183
Cyclohexane	20.0	15.6	78.2	62	138
Cyclohexanone	100	126	126	10	200
Dibromochloromethane	20.0	20.1	100	65	130
Dibromomethane	20.0	18.6	93.1	79	124
Dichlorodifluoromethane	20.0	15.5	77.5	22	162
Dicyclopentadiene	20.0	14.3	71.3	56	130
Diisopropyl Ether	20.0	16.2	80.9	61	142
Epichlorohydrin	200	160	80.2	10	125
Ethyl Acetate	200	176	87.9	36	140
Ethyl Cyanide	20.0	21.2	106	38	177
Ethyl Ether	20.0	18.6	93.2	59	134
Ethyl methacrylate	20.0	18.1	90.7	63	129
Ethylbenzene	20.0	16.9	84.6	72	127
Ethylene oxide	20.0	14.3	71.4	10	200
Freon-113	20.0	19.0	94.8	53	150
Hexachlorobutadiene	20.0	19.2	95.8	45	152
Hexane	20.0	15.2	76.2	43	162
Iodomethane	20.0	15.1	75.3	58	132
Isobutyl alcohol	200	260	130	10	193
Isopropylbenzene	20.0	18.1	90.3	58	130
Methacrylonitrile	20.0	16.4	82.1	58	141
Methyl acetate	200	178	89.2	29	161
Methyl methacrylate	20.0	19.2	96.0	51	139
Methyl tert-butyl ether	40.0	33.3	83.3	63	123
Methylcyclohexane	20.0	17.3	86.7	56	144
Methylene chloride	20.0	17.6	88.2	61	135
Naphthalene	20.0	16.5	82.7	33	148

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Laboratory Control Sample (LCS)

RunID: K_100708B-5535242 Units: ug/L
Analysis Date: 07/08/2010 11:55 Analyst: LU_L

Analyte	Spike Result Added		Percent Recovery	Lower Limit	Upper Limit
n-Butylbenzene	20.0	16.5	82.7	62	136
n-Propylbenzene	20.0	16.6	83.0	57	131
p-Diethylbenzene	20.0	17.0	84.8	53	155
sec-Butylbenzene	20.0	16.7	83.3	63	131
Styrene	20.0	17.2	86.2	69	120
t-Butyl alcohol	200	216	108	14	165
tert-Amyl methyl ether	20.0	16.7	83.4	62	127
tert-Butyl ethyl ether	20.0	15.9	79.4	61	126
tert-Butylbenzene	20.0	18.5	92.6	59	131
Tetrachloroethene	20.0	20.2	101	45	173
Tetrahydrofuran	20.0	17.4	86.9	35	164
Toluene	20.0	18.2	91.0	74	126
trans-1,4-Dichloro-2-Butene	20.0	87.1	435 *	10	302
Trichloroethene	20.0	19.8	99.2	79	131
Trichlorofluoromethane	20.0	18.0	90.1	49	153
Vinyl acetate	20.0	15.7	78.6	10	167
Vinyl chloride	20.0	15.4	76.8	51	148
cis-1,2-Dichloroethene	20.0	18.4	91.9	71	128
cis-1,3-Dichloropropene	20.0	19.3	96.7	67	128
m,p-Xylene	40.0	33.5	83.7	71	129
o-Xylene	20.0	17.2	86.0	74	130
trans-1,2-Dichloroethene	20.0	16.5	82.7	66	128
trans-1,3-Dichloropropene	20.0	19.6	98.0	60	128
1,2-Dichloroethene (total)	40.0	34.9	87.3	66	128
1,3-Dichloropropene, Total	40.0	38.9	97.4	60	128
Xylenes,Total	60.0	50.7	84.4	71	130
Surr: 1,2-Dichloroethane-d4	50.0	46.9	93.8	70	130
Surr: 4-Bromofluorobenzene	50.0	48.7	97.3	74	125
Surr: Toluene-d8	50.0	47.8	95.7	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Sample Spiked: H1007005600

RunID: K_100708B-5535248 Units: ug/L Analysis Date: 07/08/2010 16:49 Analyst: LU_L

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1,1,2-Tetrachloroethane	ND	20	17.4	87.0	20	18.3	91.4	4.90	20	68	124
1,1,1-Trichloroethane	ND	20	18.5	92.5	20	18.1	90.5	2.26	20	69	123
1,1,2,2-Tetrachloroethane	ND	20	19.2	96.0	20	20.5	102	6.45	20	69	130
1,1,2-Trichloroethane	ND	20	22.4	112	20	21.7	108	3.20	20		126
1,1-Dichloroethane	ND	20	19.8	99.1	20	18.9	94.5	4.70	20	65	129
1,1-Dichloroethene	ND	20	20.0	100	20	19.4	96.8	3.51	22	61	139
1,1-Dichloropropene	ND	20	18.6	92.8	20	18.0	89.8	3.26	20	69	121
1,2,3-Trichlorobenzene	ND	20	14.0	69.9	20	14.1	70.4	0.705	20	53	127
1,2,3-Trichloropropane	ND	20	19.3	96.6	20	19.8	99.2	2.66	20	79	124
1,2,4-Trichlorobenzene	ND	20	13.9	69.6	20	13.4	66.9	3.97	20	58	118
1,2,4-Trimethylbenzene	ND	20	18.0	89.9	20	17.3	86.3	4.13	20	43	132
1,2-Dibromo-3-chloropropane	ND	20	21.1	106	20	20.0	100	5.48	20	46	131
1,2-Dibromoethane	ND	20	19.4	97.1	20	20.2	101	3.81	20	76	122
1,2-Dichlorobenzene	ND	20	18.1	90.3	20	17.1	85.4	5.56	20	74	110
1,2-Dichloroethane	ND	20	17.8	89.0	20	17.9	89.6	0.705	20	60	129
1,2-Dichloropropane	ND	20	19.1	95.6	20	19.7	98.6	3.05	20	76	116
1,3,5-Trimethylbenzene	ND	20	16.9	84.6	20	17.1	85.6	1.15	20	51	121
1,3-Butadiene	ND	20	5.61	28.1	20	5.01	25.1	11.3	20	10	181
1,3-Dichlorobenzene	ND	20	17.9	89.5	20	16.8	84.2	6.14	20	71	110
1,3-Dichloropropane	ND	20	18.9	94.7	20	19.5	97.6	3.05	20	80	119
1,4-Dichlorobenzene	ND	20	19.4	97.2	20	18.3	91.4	6.10	20	69	110
1,4-Dioxane	ND	800	884	110	800	1080	135	19.9	20	10	196
2,2,4-Trimethylpentane	27.4	20	70.4	215 *	20	68.9	208 *	2.04	20	48	133
2,2-Dichloropropane	ND	20	16.4	82.1	20	16.1	80.5	2.07	20	52	122
2-Butanone	ND	20	19.8	98.9	20	19.7	98.4	0.492	20	10	133
2-Chloroethyl vinyl ether	ND	20	0	0 *	20	0	0 *	0	20	10	182
2-Chlorotoluene	ND	20	18.5	92.7	20	18.3	91.4	1.36	20	69	112
2-Hexanone	ND	20	17.6	88.1	20	18.0	89.8	2.00	20	10	163
2-Nitropropane	ND	20	83.4	417 *	20	86.0	430 *	3.07	20	10	187
4-Chlorotoluene	ND	20	22.4	112 *	20	23.0	115 *	2.49	20	37	110
4-Isopropyltoluene	ND	20	17.8	88.8	20	17.0	85.0	4.32	20	65	116
4-Methyl-2-pentanone	ND	20	18.5	92.5	20	17.9	89.6	3.16	20	10	159
Acetone	ND	20	29.6	148	20	34.7	173 *	15.7	20	10	160

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10060878 Page 38

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: H1007005600

RunID: K_100708B-5535248 Units: ug/L Analysis Date: 07/08/2010 16:49 Analyst: LU_L

Analyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
		Added		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Added						
Acetonitrile	ND	200	201	101	200	202	101	0.591	20	10	200
Acrylonitrile	ND	20	20.5	102	20	20.5	103	0.293	20	45	155
Allyl chloride	ND	20	24.8	124	20	23.6	118	4.86	20	37	157
alpha-Methylstyrene	ND	20	18.4	91.9	20	16.9	84.5	8.35	20	10	142
Benzene	402	20	423	N/C	20	419	N/C	N/C	22	70	124
Benzyl chloride	ND	100	92.7	92.7	100	91.1	91.1	1.80	20	10	200
Bromobenzene	ND	20	18.7	93.6	20	18.7	93.7	0.101	20	72	111
Bromochloromethane	ND	20	18.6	93.0	20	18.9	94.7	1.81	20	73	126
Bromodichloromethane	ND	20	21.6	108	20	21.3	107	1.21	20	68	125
Bromoform	ND	20	19.8	99.2	20	18.8	94.0	5.40	20	44	132
Bromomethane	ND	20	15.7	78.4	20	16.0	80.1	2.03	20	50	140
Butyl Acetate	ND	20	18.1	90.4	20	17.5	87.3	3.44	30	60	140
Carbon disulfide	ND	20	16.4	82.0	20	15.7	78.6	4.18	20	46	143
Carbon tetrachloride	ND	20	19.0	95.2	20	19.4	97.1	1.97	20	66	126
Chlorobenzene	ND	20	18.7	93.5	20	18.6	92.8	0.795	21	68	123
Chloroethane	ND	20	18.8	94.1	20	18.2	90.9	3.41	20	59	134
Chloroform	ND	20	19.9	99.6	20	19.4	97.0	2.66	20	68	127
Chloromethane	ND	20	14.9	74.6	20	14.0	69.9	6.49	20	51	137
Chloroprene	ND	20	17.0	85.2	20	16.7	83.3	2.20	30	60	140
Crotonaldehyde	ND	100	43.6	43.6	100	44.1	44.1	0.953	20	10	200
Cyclohexane	43.3	20	60.5	85.6	20	58.7	76.6	3.01	20	61	132
Cyclohexanone	ND	100	19.5	19.5	100	30.5	30.5	44.0 *	20	10	109
Dibromochloromethane	ND	20	19.9	99.6	20	19.5	97.4	2.20	20	58	131
Dibromomethane	ND	20	20.0	100	20	20.1	101	0.459	20	82	123
Dichlorodifluoromethane	ND	20	17.5	87.6	20	16.0	80.0	9.02	20	35	143
Dicyclopentadiene	ND	20	17.6	88.2	20	16.8	84.0	4.88	20	14	141
Diisopropyl Ether	ND	20	16.8	83.8	20	16.9	84.7	1.10	20	53	135
Epichlorohydrin	ND	200	158	79.1	200	143	71.5	10.0	20	10	200
Ethyl Acetate	ND	200	184	92.1	200	181	90.3	1.88	20	10	200
Ethyl Cyanide	ND	20	20.3	101	20	19.7	98.4	3.00	20	10	151
Ethyl Ether	ND	20	18.2	91.1	20	18.1	90.6	0.534	20	60	135
Ethyl methacrylate	ND	20	18.7	93.4	20	19.6	97.9	4.70	20	66	125

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: H1007005600

RunID: K_100708B-5535248 Units: ug/L Analysis Date: 07/08/2010 16:49 Analyst: LU_L

Analyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
	rtodut	Added	rtoodii	rtocorory	Added	rtooun	recovery				
Ethylbenzene	27.9	20	46.5	93.3	20	46.3	92.3	0.453	20	76	122
Ethylene oxide	ND	20	0	0 *	20	0	0 *	0	20	25	150
Freon-113	ND	20	19.3	96.6	20	19.7	98.4	1.92	20	50	155
Hexachlorobutadiene	ND	20	20.5	102	20	19.2	96.0	6.44	20	43	137
Hexane	15.7	20	38.4	113	20	36.2	103	5.71	20	46	137
Iodomethane	ND	20	15.2	75.8	20	15.1	75.4	0.470	20	57	145
Isobutyl alcohol	ND	200	214	107	200	179	89.3	17.8	20	10	114
Isopropylbenzene	73.8	20	94.9	106	20	95.1	106	0.179	20	57	124
Methacrylonitrile	ND	20	14.9	74.6	20	16.0	80.1	7.10	20	51	139
Methyl acetate	ND	200	182	90.8	200	177	88.5	2.56	20	72	120
Methyl methacrylate	ND	20	25.5	128	20	26.1	130	2.17	20	46	139
Methyl tert-butyl ether	552	40	579	N/C	40	578	N/C	N/C	20	10	200
Methylcyclohexane	31.0	20	58.4	137 *	20	57.4	132 *	1.73	20	68	127
Methylene chloride	ND	20	19.0	95.1	20	17.9	89.5	6.04	20	70	134
Naphthalene	165	20	192	N/C	20	184	N/C	N/C	20	42	140
n-Butylbenzene	24.4	20	47.0	113 *	20	44.0	97.8	6.67	20	82	112
n-Propylbenzene	224	20	256	N/C	20	251	N/C	N/C	20	73	108
p-Diethylbenzene	18.3	20	39.3	105	20	36.4	90.7	7.49	20	65	164
sec-Butylbenzene	15.4	20	37.0	108	20	34.5	95.4	7.17	20	76	110
Styrene	ND	20	17.9	89.3	20	17.7	88.3	1.17	20	58	152
t-Butyl alcohol	130	200	364	117	200	333	101	8.94	20	58	152
tert-Amyl methyl ether	10.4	20	27.8	87.0	20	28.3	89.4	1.71	20	62	127
tert-Butyl ethyl ether	ND	20	17.7	88.5	20	16.8	84.0	5.15	20	70	123
tert-Butylbenzene	ND	20	17.2	86.0	20	17.4	87.2	1.42	20	66	120
Tetrachloroethene	ND	20	20.3	102	20	20.8	104	2.10	20	71	130
Tetrahydrofuran	ND	20	36.9	184 *	20	36.9	185 *	0.152	20	58	149
Toluene	5.50	20	24.6	95.3	20	24.3	93.8	1.28	24	80	117
trans-1,4-Dichloro-2-Butene	ND	20	74.7	374 *	20	71.5	357 *	4.40	20	10	309
Trichloroethene	ND	20	20.9	104	20	20.2	101	3.37	21	82	121
Trichlorofluoromethane	ND	20	18.8	94.3	20	18.4	92.0	2.38	20	74	138
Vinyl acetate	ND	20	16.1	80.5	20	15.4	76.9	4.52	20	66	135
Vinyl chloride	ND	20	15.7	78.5	20	15.8	78.8	0.292	20	45	143

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10060878

Method: SW8260B Lab Batch ID: R304372

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: H1007005600

RunID: K_100708B-5535248 Units: ug/L Analysis Date: 07/08/2010 16:49 Analyst: LU_L

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
cis-1,2-Dichloroethene	ND	20	19.3	96.3	20	19.3	96.5	0.244	20	67	132
cis-1,3-Dichloropropene	ND	20	20.2	101	20	19.9	99.7	1.36	20	67	116
m,p-Xylene	4.91	40	39.3	85.9	40	40.6	89.2	3.34	20	69	127
o-Xylene	1.05	20	18.5	87.1	20	19.5	92.0	5.23	20	84	114
trans-1,2-Dichloroethene	ND	20	17.8	88.8	20	17.8	88.8	0	20	68	131
trans-1,3-Dichloropropene	ND	20	20.3	102	20	20.7	103	1.74	20	56	131
1,2-Dichloroethene (total)	ND	40	37.1	92.6	40	37.1	92.7	0.127	20	67	132
1,3-Dichloropropene, Total	ND	40	40.5	101	40	40.6	102	0.207	20	56	131
Xylenes,Total	5.97	60	57.8	86.3	60	60.1	90.2	3.95	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	45.3	90.6	50	43.7	87.5	3.58	30	70	130
Surr: 4-Bromofluorobenzene	ND	50	48.3	96.7	50	49.3	98.6	1.99	30	74	125
Surr: Toluene-d8	ND	50	47	93.9	50	47.9	95.8	2.05	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10060878 Page 41

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 pH - water
 WorkOrder:
 10060878

 Method:
 SW9040C
 Lab Batch ID:
 R303740

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10060878-01D GLV1 10060878-02D GLV2

Laboratory Control Sample (LCS)

RunID: WET_100628C-5526242 Units: pH Units
Analysis Date: 06/28/2010 15:30 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit	
рН	7.000	7.050	100.7	98	102	

Sample Duplicate

Original Sample: 10060648-06

RunID: WET_100628C-5526243 Units: pH Units

Analysis Date: 06/28/2010 15:30 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
рН	6.64	6.65	0.150	5
Temperature (oC)	24.9	24.9	0	5

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Chemical Oxygen Demand WorkOrder: 10060878 Analysis: Method: SM5220 C Lab Batch ID: R303806

Method Blank

Analyst:

Samples in Analytical Batch:

RunID: WET_100629C-5527039 Units: mg/L PAC 06/29/2010 11:30

Analysis Date:

Lab Sample ID **Client Sample ID** 10060878-01H GLV1

10060878-02H GLV2

Analyte	Result	Rep Limit
Chemical Oxygen Demand	ND	3.0

Laboratory Control Sample (LCS)

WET_100629C-5527041 RunID: Units: mg/L Analysis Date: 06/29/2010 11:30 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chemical Oxygen Demand	104.0	101.3	97.37	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10060646-01

WET_100629C-5527043 RunID: Units: mg/L Analysis Date: 06/29/2010 11:30 Analyst: PAC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chemical Oxygen Demand	45.57	50	88.60	86.06	50	88.60	86.06	0	10	80	120

Qualifiers: ND/U - Not Detected at the Reporting Limit MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Ignitability WorkOrder: 10060878 Analysis: SW1010A Method: Lab Batch ID: R303822

Samples in Analytical Batch:

Lab Sample ID **Client Sample ID**

10060878-01E GLV1 10060878-02E GLV2

Laboratory Control Sample (LCS)

WET_100629D-5527274 RunID: Units: ۰F Analysis Date: 06/29/2010 14:30 Analyst: EB1

	Analyte	Spike Added	Result	Percent Recovery		
Ignitability		81.00	81.32	100.4	97.5	102.5

Sample Duplicate

Original Sample: 10060763-01

WET_100629D-5527275 RunID: Units: °F Analysis Date: 06/29/2010 14:30 Analyst: EB1

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Ignitability	162	168.3	3.63	20

Qualifiers: ND/U - Not Detected at the Reporting Limit MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Biochemical Oxygen Demand - 5 Days WorkOrder: 10060878

Method: SM5210 B Lab Batch ID: R304081

Method Blank

Samples in Analytical Batch:

RunID: WET_100628H-5530965 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Lab Sample ID Client Sample ID

10060878-01F GLV1 10060878-02F GLV2

Analyte	Result	Rep Limit
Biochemical Oxygen Demand	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100628H-5530967 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand	198.0	193.2	97.60	83.7	114

Sample Duplicate

Original Sample: 10060641-02

RunID: WET_100628H-5530968 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Biochemical Oxygen Demand	ND	ND	0	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Carbonaceous Biochemical Oxygen Demand - 5 Days WorkOrder: 10060878

Method: SM5210 B Lab Batch ID: R304082

Method Blank

Samples in Analytical Batch:

RunID: WET_100628I-5530972 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Lab Sample IDClient Sample ID10060878-01GGLV1

10060878-02G GLV2

Analyte	Result	Rep Limit
Biochemical Oxygen Demand, Carbonaceous	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100628I-5530974 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand, Carbonac	198.0	193.2	97.60	83.7	114

Sample Duplicate

Original Sample: 10060640-01

RunID: WET_100628I-5530975 Units: mg/L
Analysis Date: 06/28/2010 13:00 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Biochemical Oxygen Demand, Carbonac	10.8	10.82	0.370	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Workorder	: Time Received:	10060878 6/28/2010 1:54:00 PM			Received By Carrier name		F lient	
Temperatu	ire:	3.0/2.0°C			Chilled by:	W	ater Ice	
1. Shipp	ing container/co	ooler in good condition?	Yes	✓	No 🗆		Not Present	
2. Custo	dy seals intact of	on shippping container/cooler?	Yes	✓	No 🗌		Not Present	
3. Custo	dy seals intact of	on sample bottles?	Yes		No 🗆		Not Present	✓
4. Chain	of custody pres	sent?	Yes	✓	No 🗆			
5. Chain	of custody sign	ed when relinquished and received?	Yes	✓	No 🗆			
6. Chain	of custody agre	ees with sample labels?	Yes	✓	No 🗆			
7. Samp	les in proper co	ntainer/bottle?	Yes	✓	No 🗌			
8. Samp	le containers int	act?	Yes	✓	No 🗆			
9. Suffic	ient sample volu	ume for indicated test?	Yes	✓	No 🗌			
1) pl		within holding time? e method holding time. Should be immediately g	Yes		No 🗹			
11. ^{Conta}	iner/Temp Blanl	k temperature in compliance?	Yes	✓	No \square			
12. Water	- VOA vials hav	e zero headspace?	Yes	✓	No 🗆 🕠	VOA Vials	Not Present	
13. Water	- Preservation of	checked upon receipt (except VOA*)?	Yes	✓	No 🗆	No	ot Applicable	
*VOA	Preservation Ch	necked After Sample Analysis						
S	PL Representati	ve:	Cont	tact Date & T	ime:			
Clien	t Name Contact	ed:						
Non C	conformance Issues:							
Client	Instructions:							

					SP	L Work	SPL Workorder No			1 1 0 C	L.	13.100	
10000	SPI - Inc					100	0608	Ž		5		٨٠٠,	
Analysis R	Analysis Request & Chain of Custody Record								9000	-	<u>.</u>	4	
481			matrix	bottle size	nres			4	Page		5	}	
ime: / // /			air 191	-				Redu	Reduestea	Allanysis	Sis	-	T
14 0 15 TO 3 3 11V	Į.	THORK	A==01}	iss ier									
7/3 578	2900	1001	lio X	=0tl =0tl iv=(грет				1,0				
	16 Carolle . Luch	o strenge to Abl	O=0	0† X 1 Iəqu	161. 103 V=0	uer			<u></u> VΤ	<i>)</i> 1			V
7 74	100/	Seral!	Z lio nə=	=an Vial			<u>ソ</u> つ	H	. 1		O	<u> </u>	1).
ne/No.:	TX WAICH CANA	1,421,5	S=S	b=b =Λ ∀			0	· C	192	a	10	7	A
Site Name: (74 / 70 Sign)	<i>71</i>		age er	ic S			$\frac{}{\Lambda}$	<u>.</u>	リ! オ	0		$\frac{C}{a}$	/
62	المحمد		T	ast Sasi			1	1	<u>U</u>	٤			7
•	Ph	578 Ja		[g= [g=	CH= OH=				(d <u>-</u>	1		7	
SAMPLE ID	DATE	TIME comp	grab X	1= O B:	_				<u>ا</u>	_			
C1177	1011 01-82-9	W	χ Σ	-		∕ ઇ	\times						
, ,	ンー・	M	×	\ \ \	-	_	Х						
, ,		N.	\ \ \	7 70	-	-		×					
				•	\ \ \	•		1				-	
` ,			<u>ξ</u>	T 16	2	_		`	×				
` '		10	× 3	91 9		-			\succeq				
\ \		S	×	<i>o</i>				March 10 10 10 10 10 10 10 10 10 10 10 10 10		X			
/ \			N ×	<i>a</i> _		-					×		
/ /			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	7	7						•	>	
1 /			\ <u>\</u>	4	16		No. of the last of						×
			S		\	•							
Client/Consultant Remarks: \$1005C	so co infamella	Laboratory remarks:	KS:						Intact?		7	Z	
-)								Ice? Temp:	ä	Z	Z	<u> </u>
Requested TAT	Special Reporting Requirements Results:	Fax	Email 🗬 PDF 😃		Detection	n Limit	Special Detection Limits (specify):			PM	review	PM review (initial):	ä
1 Business Day Contract	Standard QC Level 3 QC Level 4.0	rc□ TX TRRP □	LA RECAP										
2 Business Days 🙋 Standard	1. Relinquished by Sampler:	an an	date 1-28/0	time $/3$ 2	75	2. Recei	2. Received by:						
3 Business Days	3. Relinquished by:		date,	time	7	4. Received by	yed by:	1/1)				
Other	f Dollamichad by:		0 1/8/75	Cime	7	A Race	Received by 1	horstory	VVCANVCAN	20			
Rush TAT requires prior notice	o. Evinquistica by.						for the						
1 8880 Interchange Drive		500 Ambassador Caffery Parkway	Caffery P	arkway			Mora con Li	459 Hughes Drive	9 Hugh	es Dri	ve 1) 0.47	6463	

	ou IdS					Nas V	SPL Workorder No. 100 60 878	er No.			℃	975785	(0)	
Analysis R	Analysis Request & Chain of Custody Record									page	4	J 0	(0	1
Client Name: AK (3			matrix	ix bottle	size	pres.			Requested	ested	Ana	Analysis		
Address: 3310 8:5 >0 11/2+	ct 37		lis=			***************************************		_		-	_			
Horsten	State TX	Zip 17005	V I		laiv 19							·		
578	2.100		jio=				SJ							
Client Contact: VSDH ST	STON borg Email: Justine	USTIN. STERNBERPALL. com									7			じ
ABC 1	WOTTER Ar)	=soi	3=Α iv=1	z09 '0 =	0=X H=7) nuo;		H	. 1 .	<u>(</u>	0		7.
Site Name: Galveston,	X		S		1=9 †				0	ر الما	000	0	1	4
Site Location: STCWALT BE	Beach Portetto	Buch	ater		ter [/		· "' []	() _z	A	Ī	
12	Ph.	713 59	7400 M=/	s=J siq= sig=	il [=	7H= 2H=			L	<u>ا</u>	<u> </u>	7	フ)
SAMPLE ID	DATE	TIME comp	grab 14	_	=8 =8		INT					7		
C179	11 01-8-11	x 05:11	<u>さ</u>	4		. 0	人 る							
				7	2	_	-	X						
				>	940	_			X					
				<u>a</u>	×		-			Х				
				d	×					X	V			
				a	×						X			
				9	×							X		
				4	<u>e</u>	w							X	
>		<i>→</i>		4	Н									χ
Itant Rema		Laboratory remarks:	arks:							Intact? Ice?	ict;	£	ZZ	ZZ
MEASE CL LATER		7	1							Temp:	:d	,)	7
Requested TAT	Special Reporting Requirements Res	Results: Fax	Email 🚰 PDF		Special Detection Limits (specify):	ection L	imits (s)	ecify):			MA_	PM review (initial):	(initia	ä
tract	Standard QC Level 3 QC Level 4 QC	_	TX TRRP 🔲 LA RECAP	_						·				
2 Business Days Standard	1. Relinquished by Sampler:		date 58	Lo tim	time 5/5(1-7-M	2.Weseived by:	<u>ک</u> ۃ	Mo		1000			
ness Days	3		date	time	a	4.	4. Received by:	by:	-	1				
Buch TAT requires prior notice	5. Relinquished by:	Architecture di Architecture de l'Architecture d	date	time	e	6.1	eceived	by Lab	6. Received by Laboratory:					
S880 Interchange	P Drive	500 Ambassac	lor Caffery	Parkwa	2	+			450	Huck	459 Huches Drive	, A		7
Houston, TX 77054 (713) 660-0901	(5) 660-0901	Scott, LA 70583 (337) 237-4775	83 (337) 237	4775			E	averse	Traverse City MI 49686 (231) 947-5777	11 496	86 (23	1) 947	7777	_

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

<u>10070097</u>

Report To: Project Name: ABC 13 Gulf Water Analysis

ABC 13 Site: Galveston, TX

Justin Sternberg <u>Site Address:</u>

3310 Bissonnet Street

Houston PO Number:

Texas <u>State:</u> Texas

77005- <u>State Cert. No.:</u> T104704205-10-4 ph: (713) 578-2900 fax: <u>Date Reported:</u> 7/19/2010

This Report Contains A Total Of 54 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: ABC 13

Certificate of Analysis Number:

10070097

ABC 13 Gulf Water Analysis Report To: **Project Name:** Site: Galveston, TX **ABC 13 Justin Sternberg** Site Address: 3310 Bissonnet Street PO Number: Houston State: Texas **Texas** 77005-T104704205-10-4 State Cert. No.: ph: (713) 578-2900 fax: 7/19/2010 **Date Reported:**

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

All samples were received expired for pH analysis. The holding time for pH is immediate and should be performed at the time of sampling. Client is aware of the holding time and requested SPL to perform the analysis.

II: ANALYSIS AND EXCEPTIONS:

SW8260B Volatile Organics:

For the sample ID "GSH 1" (SPL ID: 10070097-01), the Surrogate recovery of Bromofluorobenzene was below QC limits due to matrix interference. The surrogate was qualified with a matrix interference ("MI") qualifier.

The results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

For QC Batch ID: R304473, the project samples were not randomly selected for use in SPL's quality control program; therefore, this sample matrix is not applicable to your project samples.

SW8270C Semivolatile Organics:

For QC Batch ID: 100822, the project samples were not randomly selected for use in SPL's quality control program; therefore, this sample matrix is not applicable to your project samples.

TX1005 TPH:

Sample ID "GSH 1" (SPL ID:10070097-01) was randomly selected for use in SPL's quality control program for Batch ID: 100840. The Matrix Spike Duplicate (MSD) recovey was outside of the advisory quality control limits due to possible matrix interference for C12-C28. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Wet Chemistry:

pH analysis was performed outside the analytical holding time. The analysis was performed as soon as possible after sample receipt.

ma West

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check

10070097 Page 1

7/19/2010

Sonia West

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: ABC 13

Certificate of Analysis Number:

10070097

for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Donia West

10070097 Page 2

7/19/2010

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

10070097

ABC 13 Report To:

Fax To:

Justin Sternberg 3310 Bissonnet Street

Houston

Texas

77005-

ph: (713) 578-2900

fax:

Project Name:

ABC 13 Gulf Water Analysis

Site:

Galveston, TX

Site Address:

PO Number:

State: Texas

State Cert. No.: T104704205-10-4

Date Reported: 7/19/2010

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
GSH 1	10070097-01	Water	07/02/2010 0:00	7/3/2010 3:15:00 AM	296464	
PEN1	10070097-02	Water	07/02/2010 0:00	7/3/2010 3:15:00 AM	296463	

Donia West

7/19/2010

Date

Sonia West Senior Project Manager

> Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> > Ted Yen **Quality Assurance Officer**

Temperature (oC)

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

				Site:	Galv	eston,	TX				
Analyses/Method	F	Result	QUAL	Rep.Li	imit		Dil. Fac	tor Date Ana	lyzed	Analyst	Seq. #
BIOCHEMICAL OXYG	EN DEMAND - 5	DAY	S			MCL		SM5210 B	Uni	its: mg/L	
Biochemical Oxygen Dem	nand	3.38			2		1	07/03/10	16:00	PAC	5534570
CARBONACEOUS BIO	CHEMICAL OX	YGEN	DEMAND) - 5 DAY	,	MCL		SM5210 B	Uni	its: mg/L	
Biochemical Oxygen Dem Carbonaceous	nand,	2.58			2.5		1.25	07/03/10	16:00	PAC	5534593
CHEMICAL OXYGEN	DEMAND					MCL		SM5220 C	Uni	its: mg/L	
Chemical Oxygen Deman	nd	248			6		2	07/07/10	11:00	PAC	5533633
IGNITABILITY						MCL		SW1010A	Uni	its: °F	
Ignitability		>212			70		1	07/15/10	13:00	EB1	5540757
OIL AND GREASE BY	METHOD 1664					MCL		1664A	Uni	its: mg/L	
Oil and Grease		ND			5		1	07/15/10			5541010
Prep Method	Prep Date	F	Prep Initials	Prep Fac	tor						
<u> </u>	07/15/2010 12:30	-		1.00							
PH - WATER						MCL		SW9040C	Uni	its: pH Ur	nits

0.1

0.1

1

07/03/10 16:00 PAC

07/03/10 16:00 PAC

5531920

5531920

Qualifiers:	ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

8.49

20.6

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

Site: Galveston, TX

Analyses/Method	Result QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 8270C		MCL SV	V8270C Ur	nits: ug/L	
1,2,4,5-Tetrachlorobenzene	ND	10	1	07/08/10 17:41	GY	5535519
1,2,4-Trichlorobenzene	ND	5	1	07/08/10 17:41	GY	5535519
1,2-Dichlorobenzene	ND	5	1	07/08/10 17:41	GY	5535519
1,2-Diphenylhydrazine	ND	10	1	07/08/10 17:41	GY	5535519
1,3,5-Trinitrobenzene	ND	10	1	07/08/10 17:41	GY	5535519
1,3-Dichlorobenzene	ND	5	1	07/08/10 17:41	GY	5535519
1,3-Dinitrobenzene	ND	10	1	07/08/10 17:41	GY	5535519
1,4-Dichlorobenzene	ND	5	1	07/08/10 17:41	GY	5535519
1,4-Napthoquinone	ND	50	1	07/08/10 17:41	GY	5535519
1-Chloronaphthalene	ND	5	1	07/08/10 17:41	GY	5535519
1-Methylnaphthalene	ND	5	1	07/08/10 17:41	GY	5535519
1-Naphthylamine	ND	5	1	07/08/10 17:41	GY	5535519
2,3,4,6-Tetrachlorophenol	ND	10	1	07/08/10 17:41	GY	5535519
2,4,5-Trichlorophenol	ND	10	1	07/08/10 17:41	GY	5535519
2,4,6-Trichlorophenol	ND	5	1	07/08/10 17:41	GY	5535519
2,4-Dichlorophenol	ND	5	1	07/08/10 17:41	GY	5535519
2,4-Dimethylphenol	ND	5	1	07/08/10 17:41	GY	5535519
2,4-Dinitrophenol	ND	25	1	07/08/10 17:41	GY	5535519
2,4-Dinitrotoluene	ND	5	1	07/08/10 17:41	GY	5535519
2,6-Dichlorophenol	ND	50	1	07/08/10 17:41	GY	5535519
2,6-Dimethylphenol	ND	5	1	07/08/10 17:41	GY	5535519
2,6-Dinitrotoluene	ND	5	1	07/08/10 17:41	GY	5535519
2-Acetylaminofluorene	ND	10	1	07/08/10 17:41	GY	5535519
2-Chloronaphthalene	ND	5	1	07/08/10 17:41	GY	5535519
2-Chlorophenol	ND	5	1	07/08/10 17:41	GY	5535519
2-Methylnaphthalene	ND	5	1	07/08/10 17:41	GY	5535519
2-Naphthylamine	ND	5	1	07/08/10 17:41	GY	5535519
2-Nitroaniline	ND	25	1	07/08/10 17:41	GY	5535519
2-Nitrophenol	ND	5	1	07/08/10 17:41	GY	5535519
2-Picoline	ND	5	1	07/08/10 17:41	GY	5535519
2-Toluidine	ND	25	1	07/08/10 17:41	GY	5535519
3,3'-Dichlorobenzidine	ND	10	1	07/08/10 17:41	GY	5535519
3,3'-Dimethylbenzidine	ND	25	1	07/08/10 17:41	GY	5535519
3-Methylcholanthrene	ND	5	1	07/08/10 17:41	GY	5535519
3-Nitroaniline	ND	25	1	07/08/10 17:41	GY	5535519
4,6-Dinitro-2-methylphenol	ND	25	1	07/08/10 17:41	GY	5535519
4-Aminobiphenyl	ND	5	1	07/08/10 17:41	GY	5535519
4-Bromophenyl phenyl ether	ND	5	1	07/08/10 17:41	GY	5535519
4-Chloro-3-methylphenol	ND	5	1	07/08/10 17:41	GY	5535519

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

TNTC - Too numerous to count

E - Estimated Value exceeds calibration curve

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

			Site:	Galvesto	n, TX			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
4-Chloroaniline	ND			5	1	07/08/10 17:41	GY	5535519
4-Chlorophenyl phenyl ether	ND			5	1	07/08/10 17:41	GY	5535519
4-Nitroaniline	ND			25	1	07/08/10 17:41	GY	5535519
4-Nitrophenol	ND			25	1	07/08/10 17:41	GY	5535519
4-Nitroquinoline-1-oxide	ND			10	1	07/08/10 17:41	GY	5535519
5-Nitro-o-toluidine	ND			5	1	07/08/10 17:41	GY	5535519
7,12-Dimethylbenz(a)anthracene	ND			5	1	07/08/10 17:41	GY	5535519
Acenaphthene	ND			5	1	07/08/10 17:41	GY	5535519
Acenaphthylene	ND			5	1	07/08/10 17:41	GY	5535519
Acetophenone	ND			5	1	07/08/10 17:41	GY	5535519
Aniline	ND			5	1	07/08/10 17:41	GY	5535519
Anthracene	ND			5	1	07/08/10 17:41	GY	5535519
Aramite	ND			50	1	07/08/10 17:41	GY	5535519
Benz(a)anthracene	ND			5	1	07/08/10 17:41	GY	5535519
Benzidine	ND			20	1	07/08/10 17:41	GY	5535519
Benzo(a)pyrene	ND			5	1	07/08/10 17:41	GY	5535519
Benzo(b)fluoranthene	ND			5	1	07/08/10 17:41	GY	5535519
Benzo(g,h,i)perylene	ND			5	1	07/08/10 17:41	GY	5535519
Benzo(k)fluoranthene	ND			5	1	07/08/10 17:41	GY	5535519
Benzoic acid	ND			25	1	07/08/10 17:41	GY	5535519
Benzyl alcohol	ND			5	1	07/08/10 17:41	GY	5535519
Biphenyl	ND			50	1	07/08/10 17:41	GY	5535519
Bis(2-chloroethoxy)methane	ND			5	1	07/08/10 17:41	GY	5535519
Bis(2-chloroethyl)ether	ND			5	1	07/08/10 17:41	GY	5535519
Bis(2-chloroisopropyl)ether	ND			5	1	07/08/10 17:41	GY	5535519
Bis(2-ethylhexyl)phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Butyl benzyl phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Caprolactam	ND			50	1	07/08/10 17:41	GY	5535519
Carbazole	ND			5	1	07/08/10 17:41	GY	5535519
Chlorobenzilate	ND			25	1	07/08/10 17:41	GY	5535519
Chrysene	ND			5	1	07/08/10 17:41	GY	5535519
Dibenz(a,h)acridine	ND			25	1	07/08/10 17:41	GY	5535519
Dibenz(a,h)anthracene	ND			5	1	07/08/10 17:41	GY	5535519
Dibenz(a,j)acridine	ND			5	1	07/08/10 17:41	GY	5535519
Dibenzofuran	ND			5	1	07/08/10 17:41	GY	5535519
Diethyl phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Dimethyl phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Di-n-butyl phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Di-n-octyl phthalate	ND			5	1	07/08/10 17:41	GY	5535519
Dinoseb	ND			10	1	07/08/10 17:41	GY	5535519

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

			Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL	Rep.L	.imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Diphenyl oxide	ND			20	1	07/08/10 17:41	GY	5535519
Diphenylamine	ND			10	1	07/08/10 17:41	GY	5535519
Ethyl methanesulfonate	ND			10	1	07/08/10 17:41	GY	5535519
Fluoranthene	ND			5	1	07/08/10 17:41	GY	5535519
Fluorene	ND			5	1	07/08/10 17:41	GY	5535519
Hexachlorobenzene	ND			5	1	07/08/10 17:41	GY	5535519
Hexachlorobutadiene	ND			5	1	07/08/10 17:41	GY	5535519
Hexachlorocyclopentadiene	ND			5	1	07/08/10 17:41	GY	5535519
Hexachloroethane	ND			5	1	07/08/10 17:41	GY	5535519
Hexachloropropene	ND			5	1	07/08/10 17:41	GY	5535519
Indeno(1,2,3-cd)pyrene	ND			5	1	07/08/10 17:41	GY	5535519
Isodrin	ND			5	1	07/08/10 17:41	GY	5535519
Isophorone	ND			5	1	07/08/10 17:41	GY	5535519
Isosafrole	ND			10	1	07/08/10 17:41	GY	5535519
Methapyrilene	ND			5	1	07/08/10 17:41	GY	5535519
Methyl methanesulfonate	ND			10	1	07/08/10 17:41	GY	5535519
Methylchrysene	ND			50	1	07/08/10 17:41	GY	5535519
Naphthalene	ND			5	1	07/08/10 17:41	GY	5535519
Nitrobenzene	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosodiethylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosodimethylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitroso-di-n-butylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosodi-n-propylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosodiphenylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosomethylethylamine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosomorpholine	ND			25	1	07/08/10 17:41	GY	5535519
N-Nitrosopiperidine	ND			5	1	07/08/10 17:41	GY	5535519
N-Nitrosopyrrolidine	ND			5	1	07/08/10 17:41	GY	5535519
Octachlorostyrene	ND			5	1	07/08/10 17:41	GY	5535519
p-Dimethylaminoazobenzene	ND			25	1	07/08/10 17:41	GY	5535519
Pentachlorobenzene	ND			5	1	07/08/10 17:41	GY	5535519
Pentachloroethane	ND			10	1	07/08/10 17:41	GY	5535519
Pentachloronitrobenzene	ND			10	1	07/08/10 17:41	GY	5535519
Pentachlorophenol	ND			25	1	07/08/10 17:41	GY	5535519
Phenacetin	ND			5	1	07/08/10 17:41	GY	5535519
Phenanthrene	ND			5	1	07/08/10 17:41	GY	5535519
Phenol	ND			5	1	07/08/10 17:41	GY	5535519
p-Phenylenediamine	ND			50	1	07/08/10 17:41	GY	5535519
Pronamide	ND			10	1	07/08/10 17:41	GY	5535519
Pyrene	ND			5	1	07/08/10 17:41	GY	5535519

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

			Sit	e: Galves	ston, TX			
Analyses/Method	Result	QUAL	R	ep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Pyridine	ND			5	1	07/08/10 17:41	GY	5535519
Quinoline	ND			50	1	07/08/10 17:41	GY	5535519
Safrole	ND			5	1	07/08/10 17:41	GY	5535519
2-Methylphenol	ND			5	1	07/08/10 17:41	GY	5535519
3 & 4-Methylphenol	ND			5	1	07/08/10 17:41	GY	5535519
Cresols, Total	ND			5	1	07/08/10 17:41	GY	5535519
Surr: 2,4,6-Tribromophenol	110		%	25-154	1	07/08/10 17:41	GY	5535519
Surr: 2-Fluorobiphenyl	72.8		%	45-108	1	07/08/10 17:41	GY	5535519
Surr: 2-Fluorophenol	64.8		%	18-113	1	07/08/10 17:41	GY	5535519
Surr: Nitrobenzene-d5	67.2		%	41-113	1	07/08/10 17:41	GY	5535519
Surr: Phenol-d5	52.1		%	10-113	1	07/08/10 17:41	GY	5535519
Surr: Terphenyl-d14	80.8		%	43-122	1	07/08/10 17:41	GY	5535519

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	07/07/2010 10:34	N_M	1.00

TPH TEXAS 1005			MCL	TX1005	Units: mg/L	
C6-C12	ND	5	1	07/11/10	4:02 NW	5541782
>C12-C28	ND	5	1	07/11/10	4:02 NW	5541782
>C28-C35	ND	5	1	07/11/10	4:02 NW	5541782
Total TPH (C6-C35)	ND	5	1	07/11/10	4:02 NW	5541782
Surr: 1-Chlorooctane	109	% 70-130	1	07/11/10	4:02 NW	5541782
Surr: o-Terphenyl	102	% 70-130	1	07/11/10	4:02 NW	5541782

Prep Method	Prep Date	Prep Initials	Prep Factor
TX1005	07/08/2010 15:00	LSB	1.00

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10070097 Page 8 7/19/2010 3:31:02 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

Site: Galveston, TX

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B			MCL SI	W8260B Un	its: ug/L	
1,1,1,2-Tetrachloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,1,1-Trichloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,1,2,2-Tetrachloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,1,2-Trichloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,1-Dichloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,1-Dichloroethene	ND		1	1	07/09/10 13:09	LT	5536699
1,1-Dichloropropene	ND		1	1	07/09/10 13:09	LT	5536699
1,2,3-Trichlorobenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,2,3-Trichloropropane	ND		1	1	07/09/10 13:09	LT	5536699
1,2,4-Trichlorobenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,2,4-Trimethylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,2-Dibromo-3-chloropropane	ND		5	1	07/09/10 13:09	LT	5536699
1,2-Dibromoethane	ND		1	1	07/09/10 13:09	LT	5536699
1,2-Dichlorobenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,2-Dichloroethane	ND		1	1	07/09/10 13:09	LT	5536699
1,2-Dichloropropane	ND		1	1	07/09/10 13:09	LT	5536699
1,3,5-Trimethylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,3-Butadiene	ND		1	1	07/09/10 13:09	LT	5536699
1,3-Dichlorobenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,3-Dichloropropane	ND		1	1	07/09/10 13:09	LT	5536699
1,4-Dichlorobenzene	ND		1	1	07/09/10 13:09	LT	5536699
1,4-Dioxane	ND		50	1	07/09/10 13:09	LT	5536699
2,2,4-Trimethylpentane	ND		1	1	07/09/10 13:09	LT	5536699
2,2-Dichloropropane	ND		1	1	07/09/10 13:09	LT	5536699
2-Butanone	ND		12	1	07/09/10 13:09	LT	5536699
2-Chloroethyl vinyl ether	ND J		5	1	07/09/10 13:09	LT	5536699
2-Chlorotoluene	ND		1	1	07/09/10 13:09	LT	5536699
2-Hexanone	ND		12	1	07/09/10 13:09	LT	5536699
2-Nitropropane	ND		5	1	07/09/10 13:09	LT	5536699
4-Chlorotoluene	ND		1	1	07/09/10 13:09	LT	5536699
4-Isopropyltoluene	ND		1	1	07/09/10 13:09	LT	5536699
4-Methyl-2-pentanone	ND		12	1	07/09/10 13:09	LT	5536699
Acetone	ND		12	1	07/09/10 13:09	LT	5536699
Acetonitrile	ND		25	1	07/09/10 13:09	LT	5536699
Acrylonitrile	ND		5	1	07/09/10 13:09	LT	5536699
Allyl chloride	ND		1	1	07/09/10 13:09	LT	5536699
alpha-Methylstyrene	ND		1	1	07/09/10 13:09	LT	5536699
Benzene	ND		1	1	07/09/10 13:09	LT	5536699
Benzyl chloride	ND		5	1	07/09/10 13:09	LT	5536699

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10070097 Page 9 7/19/2010 3:31:02 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

			Site:	Galveston,	TX			
Analyses/Method	Result	QUAL	Rep.Li	mit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bromobenzene	ND			1	1	07/09/10 13:09	LT	5536699
Bromochloromethane	ND			1	1	07/09/10 13:09	LT	5536699
Bromodichloromethane	ND			1	1	07/09/10 13:09	LT	5536699
Bromoform	ND			1	1	07/09/10 13:09	LT	5536699
Bromomethane	ND			1	1	07/09/10 13:09	LT	5536699
Butyl Acetate	ND			1	1	07/09/10 13:09	LT	5536699
Carbon disulfide	ND			5	1	07/09/10 13:09	LT	5536699
Carbon tetrachloride	ND			1	1	07/09/10 13:09	LT	5536699
Chlorobenzene	ND			1	1	07/09/10 13:09	LT	5536699
Chloroethane	ND			1	1	07/09/10 13:09	LT	5536699
Chloroform	ND			1	1	07/09/10 13:09	LT	5536699
Chloromethane	ND			1	1	07/09/10 13:09	LT	5536699
Chloroprene	ND			1	1	07/09/10 13:09	LT	5536699
Crotonaldehyde	ND			25	1	07/09/10 13:09	LT	5536699
Cyclohexane	ND			1	1	07/09/10 13:09	LT	5536699
Cyclohexanone	ND			25	1	07/09/10 13:09	LT	5536699
Dibromochloromethane	ND			1	1	07/09/10 13:09	LT	5536699
Dibromomethane	ND			1	1	07/09/10 13:09	LT	5536699
Dichlorodifluoromethane	ND			1	1	07/09/10 13:09	LT	5536699
Dicyclopentadiene	ND			1	1	07/09/10 13:09	LT	5536699
Diisopropyl Ether	ND			1	1	07/09/10 13:09	LT	5536699
Epichlorohydrin	ND			25	1	07/09/10 13:09	LT	5536699
Ethyl Acetate	ND			5	1	07/09/10 13:09	LT	5536699
Ethyl Cyanide	ND			5	1	07/09/10 13:09	LT	5536699
Ethyl Ether	ND			1	1	07/09/10 13:09	LT	5536699
Ethyl methacrylate	ND			1	1	07/09/10 13:09	LT	5536699
Ethylbenzene	ND			1	1	07/09/10 13:09	LT	5536699
Ethylene oxide	ND			25	1	07/09/10 13:09	LT	5536699
Freon-113	ND			5	1	07/09/10 16:57	LT	5536871
Hexachlorobutadiene	ND			1	1	07/09/10 13:09	LT	5536699
Hexane	ND			1	1	07/09/10 13:09	LT	5536699
Iodomethane	ND			1	1	07/09/10 13:09	LT	5536699
Isobutyl alcohol	ND			50	1	07/09/10 13:09	LT	5536699
Isopropylbenzene	ND			1	1	07/09/10 13:09	LT	5536699
Methacrylonitrile	ND			1	1	07/09/10 16:57	LT	5536871
Methyl acetate	ND			5	1	07/09/10 13:09	LT	5536699
Methyl methacrylate	ND			1	1	07/09/10 13:09	LT	5536699
Methyl tert-butyl ether	ND			1	1	07/09/10 13:09	LT	5536699
Methylcyclohexane	ND			1	1	07/09/10 13:09	LT	5536699
Methylene chloride	ND			1	1	07/09/10 13:09	LT	5536699

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GSH 1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-01

		Sit	e: Galvesto	on, TX			
Analyses/Method	Result	QUAL R	ep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Naphthalene	ND		1	1	07/09/10 13:09	LT	5536699
n-Butylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
n-Propylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
p-Diethylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
sec-Butylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
Styrene	ND		1	1	07/09/10 13:09	LT	5536699
t-Butyl alcohol	ND		25	1	07/09/10 13:09	LT	5536699
tert-Amyl methyl ether	ND		1	1	07/09/10 13:09	LT	5536699
tert-Butyl ethyl ether	ND		1	1	07/09/10 13:09	LT	5536699
tert-Butylbenzene	ND		1	1	07/09/10 13:09	LT	5536699
Tetrachloroethene	ND		1	1	07/09/10 13:09	LT	5536699
Tetrahydrofuran	ND		1	1	07/09/10 16:57	LT	5536871
Toluene	ND		1	1	07/09/10 13:09	LT	5536699
trans-1,4-Dichloro-2-Butene	ND		25	1	07/09/10 13:09	LT	5536699
Trichloroethene	ND		1	1	07/09/10 13:09	LT	5536699
Trichlorofluoromethane	ND		1	1	07/09/10 13:09	LT	5536699
Vinyl acetate	ND		1	1	07/09/10 13:09	LT	5536699
Vinyl chloride	ND		1	1	07/09/10 13:09	LT	5536699
cis-1,2-Dichloroethene	ND		1	1	07/09/10 13:09	LT	5536699
cis-1,3-Dichloropropene	ND		1	1	07/09/10 13:09	LT	5536699
m,p-Xylene	ND		2	1	07/09/10 13:09	LT	5536699
o-Xylene	ND		1	1	07/09/10 13:09	LT	5536699
trans-1,2-Dichloroethene	ND		1	1	07/09/10 13:09	LT	5536699
trans-1,3-Dichloropropene	ND		1	1	07/09/10 13:09	LT	5536699
1,2-Dichloroethene (total)	ND		1	1	07/09/10 13:09	LT	5536699
Xylenes,Total	ND		1	1	07/09/10 13:09	LT	5536699
1,3-Dichloropropene, Total	ND		1	1	07/09/10 13:09	LT	5536699
Surr: 1,2-Dichloroethane-d4	98.7	%	70-130	1	07/09/10 13:09	LT	5536699
Surr: 1,2-Dichloroethane-d4	89.7	%	70-130	1	07/09/10 16:57	LT	5536871
Surr: 4-Bromofluorobenzene	99.9	%	74-125	1	07/09/10 13:09	LT	5536699
Surr: 4-Bromofluorobenzene	72.7 MI	* %	74-125	1	07/09/10 16:57	LT	5536871
Surr: Toluene-d8	102	%	82-118	1	07/09/10 16:57	LT	5536871
Surr: Toluene-d8	89.7	%	82-118	1	07/09/10 13:09	LT	5536699

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

				Site: Galv	eston, T	X			
Analyses/Method		Result	QUAL	Rep.Limit	Di	I. Facto	r Date Anal	yzed Analyst	Seq. #
BIOCHEMICAL OXYG	EN DEMAND	- 5 DAY	S		MCL	S	M5210 B	Units: mg/L	
Biochemical Oxygen Dem	nand	2.04		2		1	07/03/10	16:00 PAC	5534571
CARBONACEOUS BIO	CHEMICAL	OXYGEN	DEMAN	D - 5 DAY	MCL	S	M5210 B	Units: mg/L	
Biochemical Oxygen Dem Carbonaceous	nand,	2.03		2		1	07/03/10	16:00 PAC	5534592
CHEMICAL OXYGEN I	DEMAND				MCL	S	M5220 C	Units: mg/L	
Chemical Oxygen Deman	nd	70.9		12		4	07/07/10	11:00 PAC	5533634
IGNITABILITY					MCL	S	W1010A	Units: °F	
Ignitability		>212		70		1	07/15/10	13:00 EB1	5540759
OIL AND GREASE BY	METHOD 16	64			MCL		1664A	Units: mg/L	
Oil and Grease		ND		5		1	07/15/10	15:15 EAG	5541011
Prep Method	Prep Date 07/15/2010 12		Prep Initials	Prep Factor 1.00					

PH - WATER			MCL	S	W9040C	Units: pl	H Units
рН	8.46	0.1		1	07/03/10	16:00 PAC	5531919
Temperature (oC)	20.6	0.1		1	07/03/10	16:00 PAC	5531919

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

Site: Galveston, TX

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	Y METHOD 82	70C		MCL S	W8270C Ur	nits: ug/L	
1,2,4,5-Tetrachlorobenzene	ND		10	1	07/08/10 18:15	GY	5535520
1,2,4-Trichlorobenzene	ND		5	1	07/08/10 18:15	GY	5535520
1,2-Dichlorobenzene	ND		5	1	07/08/10 18:15	GY	5535520
1,2-Diphenylhydrazine	ND		10	1	07/08/10 18:15	GY	5535520
1,3,5-Trinitrobenzene	ND		10	1	07/08/10 18:15	GY	5535520
1,3-Dichlorobenzene	ND		5	1	07/08/10 18:15	GY	5535520
1,3-Dinitrobenzene	ND		10	1	07/08/10 18:15	GY	5535520
1,4-Dichlorobenzene	ND		5	1	07/08/10 18:15	GY	5535520
1,4-Napthoquinone	ND		50	1	07/08/10 18:15	GY	5535520
1-Chloronaphthalene	ND		5	1	07/08/10 18:15	GY	5535520
1-Methylnaphthalene	ND		5	1	07/08/10 18:15	GY	5535520
1-Naphthylamine	ND		5	1	07/08/10 18:15	GY	5535520
2,3,4,6-Tetrachlorophenol	ND		10	1	07/08/10 18:15	GY	5535520
2,4,5-Trichlorophenol	ND		10	1	07/08/10 18:15	GY	5535520
2,4,6-Trichlorophenol	ND		5	1	07/08/10 18:15	GY	5535520
2,4-Dichlorophenol	ND		5	1	07/08/10 18:15	GY	5535520
2,4-Dimethylphenol	ND		5	1	07/08/10 18:15	GY	5535520
2,4-Dinitrophenol	ND		25	1	07/08/10 18:15	GY	5535520
2,4-Dinitrotoluene	ND		5	1	07/08/10 18:15	GY	5535520
2,6-Dichlorophenol	ND		50	1	07/08/10 18:15	GY	5535520
2,6-Dimethylphenol	ND		5	1	07/08/10 18:15	GY	5535520
2,6-Dinitrotoluene	ND		5	1	07/08/10 18:15	GY	5535520
2-Acetylaminofluorene	ND		10	1	07/08/10 18:15	GY	5535520
2-Chloronaphthalene	ND		5	1	07/08/10 18:15	GY	5535520
2-Chlorophenol	ND		5	1	07/08/10 18:15	GY	5535520
2-Methylnaphthalene	ND		5	1	07/08/10 18:15	GY	5535520
2-Naphthylamine	ND		5	1	07/08/10 18:15	GY	5535520
2-Nitroaniline	ND		25	1	07/08/10 18:15	GY	5535520
2-Nitrophenol	ND		5	1	07/08/10 18:15	GY	5535520
2-Picoline	ND		5	1	07/08/10 18:15	GY	5535520
2-Toluidine	ND		25	1	07/08/10 18:15	GY	5535520
3,3'-Dichlorobenzidine	ND		10	1	07/08/10 18:15	GY	5535520
3,3'-Dimethylbenzidine	ND		25	1	07/08/10 18:15	GY	5535520
3-Methylcholanthrene	ND		5	1	07/08/10 18:15	GY	5535520
3-Nitroaniline	ND		25	1	07/08/10 18:15	GY	5535520
4,6-Dinitro-2-methylphenol	ND		25	1	07/08/10 18:15	GY	5535520
4-Aminobiphenyl	ND		5	1	07/08/10 18:15	GY	5535520
4-Bromophenyl phenyl ether	ND		5	1	07/08/10 18:15	GY	5535520
4-Chloro-3-methylphenol	ND		5	1	07/08/10 18:15	GY	5535520

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

			Site:	Galvesto	n, TX			
Analyses/Method	Result	QUAL	Rep.L	imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
4-Chloroaniline	ND			5	1	07/08/10 18:15	GY	5535520
4-Chlorophenyl phenyl ether	ND			5	1	07/08/10 18:15	GY	5535520
4-Nitroaniline	ND			25	1	07/08/10 18:15	GY	5535520
4-Nitrophenol	ND			25	1	07/08/10 18:15	GY	5535520
4-Nitroquinoline-1-oxide	ND			10	1	07/08/10 18:15	GY	5535520
5-Nitro-o-toluidine	ND			5	1	07/08/10 18:15	GY	5535520
7,12-Dimethylbenz(a)anthracene	ND			5	1	07/08/10 18:15	GY	5535520
Acenaphthene	ND			5	1	07/08/10 18:15	GY	5535520
Acenaphthylene	ND			5	1	07/08/10 18:15	GY	5535520
Acetophenone	ND			5	1	07/08/10 18:15	GY	5535520
Aniline	ND			5	1	07/08/10 18:15	GY	5535520
Anthracene	ND			5	1	07/08/10 18:15	GY	5535520
Aramite	ND			50	1	07/08/10 18:15	GY	5535520
Benz(a)anthracene	ND			5	1	07/08/10 18:15	GY	5535520
Benzidine	ND			20	1	07/08/10 18:15	GY	5535520
Benzo(a)pyrene	ND			5	1	07/08/10 18:15	GY	5535520
Benzo(b)fluoranthene	ND			5	1	07/08/10 18:15	GY	5535520
Benzo(g,h,i)perylene	ND			5	1	07/08/10 18:15	GY	5535520
Benzo(k)fluoranthene	ND			5	1	07/08/10 18:15	GY	5535520
Benzoic acid	ND			25	1	07/08/10 18:15	GY	5535520
Benzyl alcohol	ND			5	1	07/08/10 18:15	GY	5535520
Biphenyl	ND			50	1	07/08/10 18:15	GY	5535520
Bis(2-chloroethoxy)methane	ND			5	1	07/08/10 18:15	GY	5535520
Bis(2-chloroethyl)ether	ND			5	1	07/08/10 18:15	GY	5535520
Bis(2-chloroisopropyl)ether	ND			5	1	07/08/10 18:15	GY	5535520
Bis(2-ethylhexyl)phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Butyl benzyl phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Caprolactam	ND			50	1	07/08/10 18:15	GY	5535520
Carbazole	ND			5	1	07/08/10 18:15	GY	5535520
Chlorobenzilate	ND			25	1	07/08/10 18:15	GY	5535520
Chrysene	ND			5	1	07/08/10 18:15	GY	5535520
Dibenz(a,h)acridine	ND			25	1	07/08/10 18:15	GY	5535520
Dibenz(a,h)anthracene	ND			5	1	07/08/10 18:15	GY	5535520
Dibenz(a,j)acridine	ND			5	1	07/08/10 18:15	GY	5535520
Dibenzofuran	ND			5	1	07/08/10 18:15	GY	5535520
Diethyl phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Dimethyl phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Di-n-butyl phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Di-n-octyl phthalate	ND			5	1	07/08/10 18:15	GY	5535520
Dinoseb	ND			10	1	07/08/10 18:15	GY	5535520

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

TNTC - Too numerous to count

E - Estimated Value exceeds calibration curve

mit

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

			Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL	Rep.L	.imit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Diphenyl oxide	ND			20	1	07/08/10 18:15	GY	5535520
Diphenylamine	ND			10	1	07/08/10 18:15	GY	5535520
Ethyl methanesulfonate	ND			10	1	07/08/10 18:15	GY	5535520
Fluoranthene	ND			5	1	07/08/10 18:15	GY	5535520
Fluorene	ND			5	1	07/08/10 18:15	GY	5535520
Hexachlorobenzene	ND			5	1	07/08/10 18:15	GY	5535520
Hexachlorobutadiene	ND			5	1	07/08/10 18:15	GY	5535520
Hexachlorocyclopentadiene	ND			5	1	07/08/10 18:15	GY	5535520
Hexachloroethane	ND			5	1	07/08/10 18:15	GY	5535520
Hexachloropropene	ND			5	1	07/08/10 18:15	GY	5535520
Indeno(1,2,3-cd)pyrene	ND			5	1	07/08/10 18:15	GY	5535520
Isodrin	ND			5	1	07/08/10 18:15	GY	5535520
Isophorone	ND			5	1	07/08/10 18:15	GY	5535520
Isosafrole	ND			10	1	07/08/10 18:15	GY	5535520
Methapyrilene	ND			5	1	07/08/10 18:15	GY	5535520
Methyl methanesulfonate	ND			10	1	07/08/10 18:15	GY	5535520
Methylchrysene	ND			50	1	07/08/10 18:15	GY	5535520
Naphthalene	ND			5	1	07/08/10 18:15	GY	5535520
Nitrobenzene	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosodiethylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosodimethylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitroso-di-n-butylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosodi-n-propylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosodiphenylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosomethylethylamine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosomorpholine	ND			25	1	07/08/10 18:15	GY	5535520
N-Nitrosopiperidine	ND			5	1	07/08/10 18:15	GY	5535520
N-Nitrosopyrrolidine	ND			5	1	07/08/10 18:15	GY	5535520
Octachlorostyrene	ND			5	1	07/08/10 18:15	GY	5535520
p-Dimethylaminoazobenzene	ND			25	1	07/08/10 18:15	GY	5535520
Pentachlorobenzene	ND			5	1	07/08/10 18:15	GY	5535520
Pentachloroethane	ND			10	1	07/08/10 18:15	GY	5535520
Pentachloronitrobenzene	ND			10	1	07/08/10 18:15	GY	5535520
Pentachlorophenol	ND			25	1	07/08/10 18:15	GY	5535520
Phenacetin	ND			5	1	07/08/10 18:15	GY	5535520
Phenanthrene	ND			5	1	07/08/10 18:15	GY	5535520
Phenol	ND			5	1	07/08/10 18:15	GY	5535520
p-Phenylenediamine	ND			50	1	07/08/10 18:15	GY	5535520
Pronamide	ND			10	1	07/08/10 18:15	GY	5535520
Pyrene	ND			5	1	07/08/10 18:15	GY	5535520

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

TNTC - Too numerous to count

E - Estimated Value exceeds calibration curve

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

			Sit	e: Galves	ston, TX			
Analyses/Method	Result	QUAL	Re	ep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Pyridine	ND			5	1	07/08/10 18:15	GY	5535520
Quinoline	ND			50	1	07/08/10 18:15	GY	5535520
Safrole	ND			5	1	07/08/10 18:15	GY	5535520
2-Methylphenol	ND			5	1	07/08/10 18:15	GY	5535520
3 & 4-Methylphenol	ND			5	1	07/08/10 18:15	GY	5535520
Cresols, Total	ND			5	1	07/08/10 18:15	GY	5535520
Surr: 2,4,6-Tribromophenol	120		%	25-154	1	07/08/10 18:15	GY	5535520
Surr: 2-Fluorobiphenyl	80.8		%	45-108	1	07/08/10 18:15	GY	5535520
Surr: 2-Fluorophenol	58.4		%	18-113	1	07/08/10 18:15	GY	5535520
Surr: Nitrobenzene-d5	76.4		%	41-113	1	07/08/10 18:15	GY	5535520
Surr: Phenol-d5	46.4		%	10-113	1	07/08/10 18:15	GY	5535520
Surr: Terphenyl-d14	82.4		%	43-122	1	07/08/10 18:15	GY	5535520

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	07/07/2010 10:34	N_M	1.00

TPH TEXAS 1005			MCL	TX1005	Units: mg/L	
C6-C12	ND	4.8	1	07/11/10	4:34 NW	5541789
>C12-C28	ND	4.8	1	07/11/10	4:34 NW	5541789
>C28-C35	ND	4.8	1	07/11/10	4:34 NW	5541789
Total TPH (C6-C35)	ND	4.8	1	07/11/10	4:34 NW	5541789
Surr: 1-Chlorooctane	106	% 70-130	1	07/11/10	4:34 NW	5541789
Surr: o-Terphenyl	98.7	% 70-130	1	07/11/10	4:34 NW	5541789

Prep Method	Prep Date	Prep Initials	Prep Factor
TX1005	07/08/2010 15:00	LSB	0.97

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

Site: Galveston, TX

Analyses/Method	Result C	QUAL Rep	.Limit	Dil. Factor	Date Analyz	zed	Analyst	Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B			MCL SV	V8260B	Un	its: ug/L	
1,1,1,2-Tetrachloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1,1-Trichloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1,2,2-Tetrachloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1,2-Trichloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1-Dichloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1-Dichloroethene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,1-Dichloropropene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2,3-Trichlorobenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2,3-Trichloropropane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2,4-Trichlorobenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2,4-Trimethylbenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2-Dibromo-3-chloropropane	ND		5	1	07/09/10 13	3:39	LT	5536700
1,2-Dibromoethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2-Dichlorobenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2-Dichloroethane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,2-Dichloropropane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,3,5-Trimethylbenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,3-Butadiene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,3-Dichlorobenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,3-Dichloropropane	ND		1	1	07/09/10 13	3:39	LT	5536700
1,4-Dichlorobenzene	ND		1	1	07/09/10 13	3:39	LT	5536700
1,4-Dioxane	ND		50	1	07/09/10 13	3:39	LT	5536700
2,2,4-Trimethylpentane	ND		1	1	07/09/10 13	3:39	LT	5536700
2,2-Dichloropropane	ND		1	1	07/09/10 13	3:39	LT	5536700
2-Butanone	ND		12	1	07/09/10 13	3:39	LT	5536700
2-Chloroethyl vinyl ether	ND J		5	1	07/09/10 13	3:39	LT	5536700
2-Chlorotoluene	ND		1	1	07/09/10 13	3:39	LT	5536700
2-Hexanone	ND		12	1	07/09/10 13	3:39	LT	5536700
2-Nitropropane	ND		5	1	07/09/10 13	3:39	LT	5536700
4-Chlorotoluene	ND		1	1	07/09/10 13	3:39	LT	5536700
4-Isopropyltoluene	ND		1	1	07/09/10 13	3:39	LT	5536700
4-Methyl-2-pentanone	ND		12	1	07/09/10 13	3:39	LT	5536700
Acetone	ND		12	1	07/09/10 13	3:39	LT	5536700
Acetonitrile	ND		25	1	07/09/10 13	3:39	LT	5536700
Acrylonitrile	ND		5	1	07/09/10 13	3:39	LT	5536700
Allyl chloride	ND		1	1	07/09/10 13	3:39	LT	5536700
alpha-Methylstyrene	ND		1	1	07/09/10 13	3:39	LT	5536700
Benzene	ND		1	1	07/09/10 13	3:39	LT	5536700
Benzyl chloride	ND		5	1	07/09/10 13	3:39	LT	5536700

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

			Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL	Rep.Li	mit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bromobenzene	ND			1	1	07/09/10 13:39	LT	5536700
Bromochloromethane	ND			1	1	07/09/10 13:39	LT	5536700
Bromodichloromethane	ND			1	1	07/09/10 13:39	LT	5536700
Bromoform	ND			1	1	07/09/10 13:39	LT	5536700
Bromomethane	ND			1	1	07/09/10 13:39	LT	5536700
Butyl Acetate	ND			1	1	07/09/10 13:39	LT	5536700
Carbon disulfide	ND			5	1	07/09/10 13:39	LT	5536700
Carbon tetrachloride	ND			1	1	07/09/10 13:39	LT	5536700
Chlorobenzene	ND			1	1	07/09/10 13:39	LT	5536700
Chloroethane	ND			1	1	07/09/10 13:39	LT	5536700
Chloroform	ND			1	1	07/09/10 13:39	LT	5536700
Chloromethane	ND			1	1	07/09/10 13:39	LT	5536700
Chloroprene	ND			1	1	07/09/10 13:39	LT	5536700
Crotonaldehyde	ND			25	1	07/09/10 13:39	LT	5536700
Cyclohexane	ND			1	1	07/09/10 13:39	LT	5536700
Cyclohexanone	ND			25	1	07/09/10 13:39	LT	5536700
Dibromochloromethane	ND			1	1	07/09/10 13:39	LT	5536700
Dibromomethane	ND			1	1	07/09/10 13:39	LT	5536700
Dichlorodifluoromethane	ND			1	1	07/09/10 13:39	LT	5536700
Dicyclopentadiene	ND			1	1	07/09/10 13:39	LT	5536700
Diisopropyl Ether	ND			1	1	07/09/10 13:39	LT	5536700
Epichlorohydrin	ND			25	1	07/09/10 13:39	LT	5536700
Ethyl Acetate	ND			5	1	07/09/10 13:39	LT	5536700
Ethyl Cyanide	ND			5	1	07/09/10 13:39	LT	5536700
Ethyl Ether	ND			1	1	07/09/10 13:39	LT	5536700
Ethyl methacrylate	ND			1	1	07/09/10 13:39	LT	5536700
Ethylbenzene	ND			1	1	07/09/10 13:39	LT	5536700
Ethylene oxide	ND			25	1	07/09/10 13:39	LT	5536700
Freon-113	ND			5	1	07/09/10 17:26	LT	5536872
Hexachlorobutadiene	ND			1	1	07/09/10 13:39	LT	5536700
Hexane	ND			1	1	07/09/10 13:39	LT	5536700
lodomethane	ND			1	1	07/09/10 13:39	LT	5536700
Isobutyl alcohol	ND			50	1	07/09/10 13:39	LT	5536700
Isopropylbenzene	ND			1	1	07/09/10 13:39	LT	5536700
Methacrylonitrile	ND			1	1	07/09/10 17:26	LT	5536872
Methyl acetate	ND			5	1	07/09/10 13:39	LT	5536700
Methyl methacrylate	ND			1	1	07/09/10 13:39	LT	5536700
Methyl tert-butyl ether	ND			1	1	07/09/10 13:39	LT	5536700
Methylcyclohexane	ND			1	1	07/09/10 13:39	LT	5536700
Methylene chloride	ND			1	1	07/09/10 13:39	LT	5536700

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: PEN1 Collected: 07/02/2010 0:00 SPL Sample ID: 10070097-02

		Site:	Galvesto	on, TX			
Analyses/Method	Result	QUAL Rep.I	Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Naphthalene	ND		1	1	07/09/10 13:39	LT	5536700
n-Butylbenzene	ND		1	1	07/09/10 13:39	LT	5536700
n-Propylbenzene	ND		1	1	07/09/10 13:39	LT	5536700
p-Diethylbenzene	ND		1	1	07/09/10 13:39	LT	5536700
sec-Butylbenzene	ND		1	1	07/09/10 13:39	LT	5536700
Styrene	ND		1	1	07/09/10 13:39	LT	5536700
t-Butyl alcohol	ND		25	1	07/09/10 13:39	LT	5536700
tert-Amyl methyl ether	ND		1	1	07/09/10 13:39	LT	5536700
tert-Butyl ethyl ether	ND		1	1	07/09/10 13:39	LT	5536700
tert-Butylbenzene	ND		1	1	07/09/10 13:39	LT	5536700
Tetrachloroethene	ND		1	1	07/09/10 13:39	LT	5536700
Tetrahydrofuran	ND		1	1	07/09/10 17:26	LT	5536872
Toluene	ND		1	1	07/09/10 13:39	LT	5536700
trans-1,4-Dichloro-2-Butene	ND		25	1	07/09/10 13:39	LT	5536700
Trichloroethene	ND		1	1	07/09/10 13:39	LT	5536700
Trichlorofluoromethane	ND		1	1	07/09/10 13:39	LT	5536700
Vinyl acetate	ND		1	1	07/09/10 13:39	LT	5536700
Vinyl chloride	ND		1	1	07/09/10 13:39	LT	5536700
cis-1,2-Dichloroethene	ND		1	1	07/09/10 13:39	LT	5536700
cis-1,3-Dichloropropene	ND		1	1	07/09/10 13:39	LT	5536700
m,p-Xylene	ND		2	1	07/09/10 13:39	LT	5536700
o-Xylene	ND		1	1	07/09/10 13:39	LT	5536700
trans-1,2-Dichloroethene	ND		1	1	07/09/10 13:39	LT	5536700
trans-1,3-Dichloropropene	ND		1	1	07/09/10 13:39	LT	5536700
1,2-Dichloroethene (total)	ND		1	1	07/09/10 13:39	LT	5536700
Xylenes,Total	ND		1	1	07/09/10 13:39	LT	5536700
1,3-Dichloropropene, Total	ND		1	1	07/09/10 13:39	LT	5536700
Surr: 1,2-Dichloroethane-d4	99.5	% 70	0-130	1	07/09/10 13:39	LT	5536700
Surr: 1,2-Dichloroethane-d4	86.7	% 70	0-130	1	07/09/10 17:26	LT	5536872
Surr: 4-Bromofluorobenzene	101	% 74	4-125	1	07/09/10 13:39	LT	5536700
Surr: 4-Bromofluorobenzene	76.2	% 74	4-125	1	07/09/10 17:26	LT	5536872
Surr: Toluene-d8	111	% 82	2-118	1	07/09/10 17:26	LT	5536872
Surr: Toluene-d8	90.5	% 82	2-118	1	07/09/10 13:39	LT	5536700

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Oil and Grease by Method 1664 WorkOrder: 10070097

Method: 1664A Lab Batch ID: R304764

Method Blank

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u> 10070097-011 GSH 1

Analysis Date: 07/15/2010 15:15 Analyst: EAG

10070097-011 G5H 1

Preparation Date: 07/15/2010 12:30 Prep By: Method: 10070097-02I PEN1

Analyte	Result	Rep Limit
Oil and Grease	ND	5.0

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: EX_100715B-5541007 Units: mg/L Analysis Date: 07/15/2010 15:15 Analyst: EAG

Preparation Date: 07/15/2010 12:30 Prep By: Method:

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Oil and Grease	40.0	39.5	98.8	40.0	39.3	98.2	0.5	18	78	114

Matrix Spike (MS)

Sample Spiked: H1007037000

RunID: EX_100715B-5541013 Units: mg/L Analysis Date: 07/15/2010 15:15 Analyst: EAG

Preparation Date: 07/15/2010 12:30 Prep By: Method:

Analyte	Sample Result	Spike Added	MS Result	MS % Recovery	Low Limit	High Limit
Oil and Grease	ND	40	38.5	96.2	78	114

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10070097

 Method:
 TX1005
 Lab Batch ID:
 100840

Method Blank

Samples in Analytical Batch:

RunID: HP_B_100711A-5541751 Units: mg/L Lab Sample ID Client Sample ID

Analysis Date: 07/11/2010 3:31 Analyst: NW 10070097-01C GSH 1
Preparation Date: 07/08/2010 15:00 Prep By: LSB Method: TX1005 10070097-02C PEN1

Analyte	Result	Rep Limit
>C12-C28	ND	5.0
>C28-C35	ND	5.0
C6-C12	ND	5.0
Total TPH (C6-C35)	ND	5.0
Surr: 1-Chlorooctane	107.6	70-130
Surr: o-Terphenyl	98.4	70-130

Laboratory Control Sample (LCS)

RunID: HP_B_100711A-5541772 Units: mg/L
Analysis Date: 07/12/2010 16:03 Analyst: NW

Preparation Date: 07/08/2010 15:00 Prep By: LSB Method: TX1005

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
>C12-C28	100	119	119	75	125
C6-C12	100	103	103	75	125
Total TPH (C6-C35)	200	222	111	75	125
Surr: 1-Chlorooctane	5.00	5.8	116	70	130
Surr: o-Terphenyl	5.00	5.48	110	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070097-01

 RunID:
 HP_B_100711A-5541786
 Units:
 mg/L

 Analysis Date:
 07/11/2010 4:13
 Analyst:
 NW

Preparation Date: 07/08/2010 15:00 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
>C12-C28	ND	100	118	118	100	127	127 *	7.38	20	75	125
C6-C12	ND	100	92.7	92.4	100	99.4	99.1	6.99	20	75	125
Total TPH (C6-C35)	ND	200.5	210.7	105.0	200.5	226.4	112.9	7.210	20	75	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10070097

 Method:
 TX1005
 Lab Batch ID:
 100840

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070097-01

RunID: HP_B_100711A-5541786 Units: mg/L
Analysis Date: 07/11/2010 4:13 Analyst: NW

Preparation Date: 07/08/2010 15:00 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Surr: 1-Chlorooctane	ND	5.01	5.33	106	5.01	5.71	114	6.94	20	70	130
Surr: o-Terphenyl	ND	5.01	5.3	106	5.01	5.68	113	6.88	20	70	130

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Method Blank

Samples in Analytical Batch:

 RunID:
 R_100708A-5535503
 Units:
 ug/L
 Lab Sample ID
 Client Sample ID

 Analysis Date:
 07/08/2010 11:23
 Analyst:
 GY
 10070097-01A
 GSH 1

Analysis Date: 07/08/2010 11:23 Analyst: GY 10070097-01A GSH 7
Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C 10070097-02A PEN1

Analyte	Result	Rep Limit
1,2,4,5-Tetrachlorobenzene	ND	10
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3,5-Trinitrobenzene	ND	10
1,3-Dichlorobenzene	ND	5.0
1,3-Dinitrobenzene	ND	10
1,4-Dichlorobenzene	ND	5.0
1,4-Napthoquinone	ND	50
1-Chloronaphthalene	ND	5.0
1-Methylnaphthalene	ND	5.0
1-Naphthylamine	ND	5.0
2,3,4,6-Tetrachlorophenol	ND	10
2,4,5-Trichlorophenol	ND	10
2,4,6-Trichlorophenol	ND	5.0
2,4-Dichlorophenol	ND	5.0
2,4-Dimethylphenol	ND	5.0
2,4-Dinitrophenol	ND	25
2,4-Dinitrotoluene	ND	5.0
2,6-Dichlorophenol	ND	50
2,6-Dimethylphenol	ND	5.0
2,6-Dinitrotoluene	ND	5.0
2-Acetylaminofluorene	ND	10
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	5.0
2-Methylnaphthalene	ND	5.0
2-Naphthylamine	ND	5.0
2-Nitroaniline	ND	25
2-Nitrophenol	ND	5.0
2-Picoline	ND	5.0
2-Toluidine	ND	25
3,3´-Dichlorobenzidine	ND	10
3,3´-Dimethylbenzidine	ND	25
3-Methylcholanthrene	ND	5.0
3-Nitroaniline	ND	25
4,6-Dinitro-2-methylphenol	ND	25
4-Aminobiphenyl	ND	5.0
4-Bromophenyl phenyl ether	ND	5.0
4-Chloro-3-methylphenol	ND	5.0
4-Chloroaniline	ND	5.0
4-Chlorophenyl phenyl ether	ND	5.0
4-Nitroaniline	ND	25
4-Nitrophenol	ND	25
4-Nitroquinoline-1-oxide	ND	10
5-Nitro-o-toluidine	ND	5.0
7,12-Dimethylbenz(a)anthracene	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Method Blank

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Result	Rep Limit
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Acetophenone	ND	5.0
Aniline	ND	5.0
Anthracene	ND	5.0
Aramite	ND	50
Benz(a)anthracene	ND	5.0
Benzidine	ND	20
Benzo(a)pyrene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzoic acid	ND	25
Benzyl alcohol	ND	5.0
Biphenyl	ND	50
Bis(2-chloroethoxy)methane	ND	5.0
Bis(2-chloroethyl)ether	ND	5.0
Bis(2-chloroisopropyl)ether	ND	5.0
Bis(2-ethylhexyl)phthalate	ND	5.0
Butyl benzyl phthalate	ND	5.0
Caprolactam	ND	50
Carbazole	ND	5.0
Chlorobenzilate	ND	25
Chrysene	ND	5.0
Dibenz(a,h)acridine	ND	25
Dibenz(a,h)anthracene	ND	5.0
Dibenz(a,j)acridine	ND	5.0
Dibenzofuran	ND	5.0
Diethyl phthalate	ND	5.0
Dimethyl phthalate	ND	5.0
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Dinoseb	ND	10
Diphenyl oxide	ND	20
Diphenylamine	ND	10
Ethyl methanesulfonate	ND	10
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Hexachloropropene	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isodrin	ND	5.0
Isophorone	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Method Blank

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Result	Rep Limit
Isosafrole	ND	10
Methapyrilene	ND	5.0
Methyl methanesulfonate	ND	10
Methylchrysene	ND	50
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodiethylamine	ND	5.0
N-Nitrosodimethylamine	ND	5.0
N-Nitroso-di-n-butylamine	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
N-Nitrosomethylethylamine	ND	5.0
N-Nitrosomorpholine	ND	25
N-Nitrosopiperidine	ND	5.0
N-Nitrosopyrrolidine	ND	5.0
Octachlorostyrene	ND	5.0
p-Dimethylaminoazobenzene	ND	25
Pentachlorobenzene	ND	5.0
Pentachloroethane	ND	10
Pentachloronitrobenzene	ND	10
Pentachlorophenol	ND	25
Phenacetin	ND	5.0
Phenanthrene	ND	5.0
Phenol	ND	5.0
p-Phenylenediamine	ND	50
Pronamide	ND	10
Pyrene	ND	5.0
Pyridine	ND	5.0
Quinoline	ND	50
Safrole	ND	5.0
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Cresols, Total	ND	5.0
Surr: 2,4,6-Tribromophenol	100.5	25-154
Surr: 2-Fluorobiphenyl	84.4	45-108
Surr: 2-Fluorophenol	58.7	18-113
Surr: Nitrobenzene-d5	74.0	41-113
Surr: Phenol-d5	42.5	10-113
Surr: Terphenyl-d14	95.2	43-122

Laboratory Control Sample (LCS)

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 26

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

RunID: R_100708A-5535506 Units: ug/L Analysis Date: 07/08/2010 13:05 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2,4,5-Tetrachlorobenzene	25.0	23.9	95.6	53	110
1,2,4-Trichlorobenzene	25.0	24.2	96.8	52	109
1,2-Dichlorobenzene	25.0	22.6	90.4	50	109
1,2-Diphenylhydrazine	25.0	22.6	90.4	40	142
1,3,5-Trinitrobenzene	25.0	16.7	66.8	16	115
1,3-Dichlorobenzene	25.0	22.0	88.0	49	106
1,3-Dinitrobenzene	25.0	24.8	99.2	46	124
1,4-Dichlorobenzene	25.0	22.2	88.8	48	106
1,4-Napthoquinone	25.0	3.93	15.7	10	110
1-Chloronaphthalene	25.0	24.3	97.2	53	116
1-Methylnaphthalene	25.0	23.4	93.6	52	109
1-Naphthylamine	25.0	21.7	86.8	10	118
2,3,4,6-Tetrachlorophenol	25.0	25.9	104	45	118
2,4,5-Trichlorophenol	25.0	24.3	97.2	48	120
2,4,6-Trichlorophenol	25.0	24.6	98.4	38	150
2,4-Dichlorophenol	25.0	23.7	94.8	50	110
2,4-Dimethylphenol	25.0	22.3	89.2	50	120
2,4-Dinitrophenol	25.0	17.1	68.4	10	122
2,4-Dinitrotoluene	25.0	24.5	98.0	50	129
2,6-Dichlorophenol	25.0	23.9	95.6	52	114
2,6-Dimethylphenol	25.0	23.0	92.0	54	113
2,6-Dinitrotoluene	25.0	25.3	101	48	127
2-Acetylaminofluorene	25.0	23.8	95.2	45	131
2-Chloronaphthalene	25.0	24.5	98.0	52	118
2-Chlorophenol	25.0	22.8	91.2	50	115
2-Methylnaphthalene	25.0	24.1	96.4	52	116
2-Naphthylamine	25.0	14.5	58.0	10	101
2-Nitroaniline	25.0	21.3	85.2	43	127
2-Nitrophenol	25.0	25.1	100	48	114
2-Picoline	25.0	20.7	82.8	38	112
2-Toluidine	50.0	42.8	85.6	10	136
3,3'-Dichlorobenzidine	25.0	20.1	80.4	30	104
3,3´-Dimethylbenzidine	25.0	20.7	82.8	50	150
3-Methylcholanthrene	25.0	24.5	98.0	52	139
3-Nitroaniline	25.0	22.5	90.0	31	114

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Laboratory Control Sample (LCS)

RunID: R_100708A-5535506 Units: ug/L Analysis Date: 07/08/2010 13:05 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
4,6-Dinitro-2-methylphenol	25.0	25.2	101	23	127
4-Aminobiphenyl	25.0	11.5	46.0	10	92
4-Bromophenyl phenyl ether	25.0	25.7	103	53	121
4-Chloro-3-methylphenol	25.0	23.6	94.4	49	120
4-Chloroaniline	25.0	22.9	91.6	54	116
4-Chlorophenyl phenyl ether	25.0	25.2	101	54	116
4-Nitroaniline	25.0	22.3	89.2	41	118
4-Nitrophenol	25.0	19.4	77.6	21	130
4-Nitroquinoline-1-oxide	25.0	16.4	65.6	10	128
5-Nitro-o-toluidine	25.0	19.5	78.0	19	96
7,12-Dimethylbenz(a)anthracene	25.0	25.0	100	56	132
Acenaphthene	25.0	23.6	94.4	52	117
Acenaphthylene	25.0	23.8	95.2	53	122
Acetophenone	25.0	22.2	88.8	49	114
Aniline	50.0	38.6	77.2	47	106
Anthracene	25.0	23.8	95.2	49	126
Aramite	25.0	16.9	67.6	38	139
Benz(a)anthracene	25.0	23.3	93.2	53	121
Benzidine	250	164	65.6	10	133
Benzo(a)pyrene	25.0	19.5	78.0	47	100
Benzo(b)fluoranthene	25.0	23.4	93.6	52	113
Benzo(g,h,i)perylene	25.0	25.2	101	52	121
Benzo(k)fluoranthene	25.0	22.2	88.8	54	117
Benzoic acid	25.0	22.9	91.6	10	133
Benzyl alcohol	25.0	20.3	81.2	40	127
Biphenyl	25.0	23.8	95.2	52	116
Bis(2-chloroethoxy)methane	25.0	23.1	92.4	47	113
Bis(2-chloroethyl)ether	25.0	22.8	91.2	48	112
Bis(2-chloroisopropyl)ether	25.0	20.2	80.8	50	150
Bis(2-ethylhexyl)phthalate	25.0	21.9	87.6	42	139
Butyl benzyl phthalate	25.0	23.5	94.0	40	139
Caprolactam	25.0	18.9	75.6	36	126
Carbazole	25.0	22.3	89.2	47	123
Chlorobenzilate	25.0	26.2	105	47	131

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Laboratory Control Sample (LCS)

RunID: R_100708A-5535506 Units: ug/L Analysis Date: 07/08/2010 13:05 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chrysene	25.0	24.0	96.0	53	117
Dibenz(a,h)acridine	25.0	23.3	93.2	49	117
Dibenz(a,h)anthracene	25.0	24.4	97.6	49	120
Dibenz(a,j)acridine	25.0	23.9	95.6	46	125
Dibenzofuran	25.0	24.7	98.8	55	119
Diethyl phthalate	25.0	23.9	95.6	45	129
Dimethyl phthalate	25.0	24.2	96.8	52	122
Di-n-butyl phthalate	25.0	23.9	95.6	42	141
Di-n-octyl phthalate	25.0	21.7	86.8	40	135
Dinoseb	25.0	27.5	110	17	148
Diphenyl oxide	25.0	24.3	97.2	53	113
Diphenylamine	50.0	52.2	104	62	136
Ethyl methanesulfonate	25.0	20.9	83.6	45	117
Fluoranthene	25.0	24.1	96.4	49	132
Fluorene	25.0	24.0	96.0	54	119
Hexachlorobenzene	25.0	26.4	106	53	117
Hexachlorobutadiene	25.0	23.6	94.4	49	106
Hexachlorocyclopentadiene	25.0	17.8	71.2	17	105
Hexachloroethane	25.0	21.1	84.4	42	110
Hexachloropropene	25.0	24.6	98.4	46	113
Indeno(1,2,3-cd)pyrene	25.0	24.7	98.8	50	129
Isodrin	25.0	23.8	95.2	50	127
Isophorone	25.0	25.8	103	52	134
Isosafrole	50.0	66.4	133	50	150
Methapyrilene	25.0	20.0	80.0	20	126
Methyl methanesulfonate	25.0	16.8	67.2	40	117
Methylchrysene	25.0	24.4	97.6	52	124
Naphthalene	25.0	23.2	92.8	53	111
Nitrobenzene	25.0	22.3	89.2	47	116
N-Nitrosodiethylamine	25.0	21.3	85.2	47	109
N-Nitrosodimethylamine	25.0	21.1	84.4	32	121
N-Nitroso-di-n-butylamine	25.0	22.4	89.6	45	121
N-Nitrosodi-n-propylamine	25.0	21.3	85.2	47	118
N-Nitrosodiphenylamine	50.0	52.2	104	62	136

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Laboratory Control Sample (LCS)

RunID: R_100708A-5535506 Units: ug/L Analysis Date: 07/08/2010 13:05 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
N-Nitrosomethylethylamine	25.0	20.8	83.2	10	135
N-Nitrosomorpholine	25.0	22.3	89.2	10	162
N-Nitrosopiperidine	25.0	23.0	92.0	50	112
N-Nitrosopyrrolidine	25.0	21.7	86.8	43	122
Octachlorostyrene	25.0	24.7	98.8	44	125
p-Dimethylaminoazobenzene	25.0	24.2	96.8	44	125
Pentachlorobenzene	25.0	25.7	103	55	113
Pentachloroethane	25.0	21.1	84.4	46	110
Pentachloronitrobenzene	25.0	25.2	101	46	142
Pentachlorophenol	25.0	18.9	75.6	44	102
Phenacetin	25.0	19.8	79.2	39	134
Phenanthrene	25.0	25.0	100	49	124
Phenol	25.0	20.5	82.0	37	128
p-Phenylenediamine	250	213	85.2	10	214
Pronamide	25.0	21.8	87.2	42	137
Pyrene	25.0	24.7	98.8	52	122
Pyridine	50.0	36.4	72.8	37	99
Quinoline	25.0	21.8	87.2	56	113
Safrole	25.0	25.2	101	56	120
2-Methylphenol	25.0	22.0	88.0	49	118
3 & 4-Methylphenol	25.0	23.0	92.0	44	132
Cresols, Total	50	45	90	44	132
Surr: 2,4,6-Tribromophenol	75.0	83.5	111	25	154
Surr: 2-Fluorobiphenyl	50.0	43.4	86.8	45	108
Surr: 2-Fluorophenol	75.0	49.8	66.4	18	113
Surr: Nitrobenzene-d5	50.0	41	82.0	41	113
Surr: Phenol-d5	75.0	37.2	49.6	10	113
Surr: Terphenyl-d14	50.0	44.2	88.4	43	122

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Sample Spiked: 10070005-01

RunID: R_100708A-5535511 Units: ug/L Analysis Date: 07/08/2010 15:58 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,2,4,5-Tetrachlorobenzene	ND	50	40.0	80.0	50	41.5	83.0	3.68	30	30	160
1,2,4-Trichlorobenzene	ND	50	38.7	77.4	50	41.6	83.2	7.22	30	10	142
1,2-Dichlorobenzene	ND	50	35.9	71.8	50	37.8	75.6	5.16	30	20	150
1,2-Diphenylhydrazine	ND	50	37.9	75.8	50	43.4	86.8	13.5	30	10	251
1,3,5-Trinitrobenzene	ND	50	21.5	43.0	50	22.1	44.2	2.75	30	10	225
1,3-Dichlorobenzene	ND	50	34.6	69.2	50	36.2	72.4	4.52	30	20	150
1,3-Dinitrobenzene	ND	50	47.2	94.4	50	48.5	97.0	2.72	30	30	170
1,4-Dichlorobenzene	ND	50	34.8	69.6	50	36.5	73.0	4.77	30	20	150
1,4-Napthoquinone	ND	50	23.9	47.8	50	28.9	57.8	18.9	30	10	200
1-Chloronaphthalene	ND	50	41.3	82.6	50	42.7	85.4	3.33	30	30	150
1-Methylnaphthalene	ND	50	39.3	78.6	50	41.0	82.0	4.23	30	30	120
1-Naphthylamine	ND	50	5.40	10.8	50	7.69	15.4	35.0 *	30	10	109
2,3,4,6-Tetrachlorophenol	ND	50	45.6	91.2	50	51.0	102	11.2	30	30	170
2,4,5-Trichlorophenol	ND	50	46.1	92.2	50	49.3	98.6	6.71	30	30	150
2,4,6-Trichlorophenol	ND	50	48.0	96.0	50	51.2	102	6.45	30	30	150
2,4-Dichlorophenol	ND	50	43.0	86.0	50	45.9	91.8	6.52	30	30	150
2,4-Dimethylphenol	ND	50	39.7	79.4	50	41.4	82.8	4.19	30	32	140
2,4-Dinitrophenol	ND	50	40.2	80.4	50	45.3	90.6	11.9	30	10	160
2,4-Dinitrotoluene	ND	50	46.2	92.4	50	48.4	96.8	4.65	30	30	150
2,6-Dichlorophenol	ND	50	44.7	89.4	50	46.9	93.8	4.80	30	30	150
2,6-Dimethylphenol	ND	50	41.7	83.4	50	41.6	83.2	0.240	30	43	128
2,6-Dinitrotoluene	ND	50	47.2	94.4	50	49.2	98.4	4.15	30	30	150
2-Acetylaminofluorene	ND	50	49.2	98.4	50	52.4	105	6.30	30	30	150
2-Chloronaphthalene	ND	50	41.8	83.6	50	43.7	87.4	4.44	30	30	150
2-Chlorophenol	ND	50	42.0	84.0	50	42.9	85.8	2.12	30	23	134
2-Methylnaphthalene	ND	50	56.0	112	50	58.8	118	4.88	30	20	170
2-Naphthylamine	ND	50	3.12	6.24 *	50	7.52	15.0	82.7 *	30	10	116
2-Nitroaniline	ND	50	41.5	83.0	50	43.9	87.8	5.62	30	20	160
2-Nitrophenol	ND	50	51.9	104	50	54.0	108	3.97	30	29	182
2-Picoline	ND	50	0	0 *	50	0	0 *	0	30	10	150
2-Toluidine	ND	100	0	0 *	100	0	0 *	0	30	30	150
3,3´-Dichlorobenzidine	ND	50	30.2	60.4	50	34.9	69.8	14.4	30	30	200
3,3´-Dimethylbenzidine	ND	50	0	0 *	50	0	0 *	0	30	10	200

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 31

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070005-01

RunID: R_100708A-5535511 Units: ug/L Analysis Date: 07/08/2010 15:58 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
3-Methylcholanthrene	ND	50	39.9	79.8	50	38.8	77.6	2.80	30	30	150
3-Nitroaniline	ND	50	21.7	43.4	50	32.2	64.4	39.0 *	30	20	160
4,6-Dinitro-2-methylphenol	ND	50	46.9	93.8	50	49.0	98.0	4.38	30	10	160
4-Aminobiphenyl	ND	50	13.8	27.6	50	22.7	45.4	48.8 *	30	10	130
4-Bromophenyl phenyl ether	ND	50	41.8	83.6	50	43.0	86.0	2.83	30	30	150
4-Chloro-3-methylphenol	ND	50	0	0 *	50	0	0 *	0	30	25	160
4-Chloroaniline	ND	50	0	4.68 *	50	5.01	10.0 *	72.7 *	30	20	160
4-Chlorophenyl phenyl ether	ND	50	42.5	85.0	50	44.4	88.8	4.37	30	25	158
4-Nitroaniline	ND	50	42.6	85.2	50	45.8	91.6	7.24	30	20	160
4-Nitrophenol	ND	50	32.6	65.2	50	38.1	76.2	15.6	30	10	132
4-Nitroquinoline-1-oxide	ND	50	39.7	79.4	50	41.0	82.0	3.22	30	10	160
5-Nitro-o-toluidine	ND	50	43.8	87.6	50	50.3	101	13.8	30	20	150
7,12-Dimethylbenz(a)anthracene	ND	50	40.3	80.6	50	42.3	84.6	4.84	30	30	160
Acenaphthene	ND	50	40.1	80.2	50	41.7	83.4	3.91	30	30	150
Acenaphthylene	ND	50	39.6	79.2	50	41.3	82.6	4.20	30	33	250
Acetophenone	ND	50	38.9	77.8	50	40.8	81.6	4.77	30	30	170
Aniline	ND	100	0	0 *	100	0	0 *	0	30	10	135
Anthracene	ND	50	39.0	78.0	50	40.2	80.4	3.03	30	27	133
Aramite	ND	50	31.6	63.2	50	31.9	63.8	0.945	30	30	140
Benz(a)anthracene	ND	50	36.9	73.8	50	39.5	79.0	6.81	30	33	143
Benzidine	ND	500	0	0 *	500	0	0 *	0	30	10	160
Benzo(a)pyrene	ND	50	30.8	61.6	50	33.0	66.0	6.90	30	17	163
Benzo(b)fluoranthene	ND	50	37.3	74.6	50	37.7	75.4	1.07	30	24	159
Benzo(g,h,i)perylene	ND	50	38.2	76.4	50	39.7	79.4	3.85	30	30	160
Benzo(k)fluoranthene	ND	50	32.2	64.4	50	33.7	67.4	4.55	30	11	162
Benzoic acid	ND	50	65.3	69.6	50	68.1	75.2	4.20	30	10	400
Benzyl alcohol	ND	50	38.2	76.4	50	40.0	80.0	4.60	30	30	160
Biphenyl	ND	50	40.2	80.4	50	41.4	82.8	2.94	30	20	150
Bis(2-chloroethoxy)methane	ND	50	40.6	81.2	50	42.9	85.8	5.51	30	33	184
Bis(2-chloroethyl)ether	ND	50	39.1	78.2	50	40.2	80.4	2.77	30	12	158
Bis(2-chloroisopropyl)ether	ND	50	34.6	69.2	50	35.9	71.8	3.69	30	20	160
Bis(2-ethylhexyl)phthalate	ND	50	40.4	80.8	50	43.5	87.0	7.39	30	10	158

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 32

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070005-01

RunID: R_100708A-5535511 Units: ug/L Analysis Date: 07/08/2010 15:58 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Butyl benzyl phthalate	ND	50	37.8	75.6	50	40.6	81.2	7.14	30	30	160
Caprolactam	ND	50	17.7	35.4	50	22.2	44.4	22.6	30	20	150
Carbazole	ND	50	40.0	80.0	50	41.8	83.6	4.40	30	30	150
Chlorobenzilate	ND	50	43.7	87.4	50	48.0	96.0	9.38	30	30	160
Chrysene	ND	50	37.6	75.2	50	39.5	79.0	4.93	30	17	168
Dibenz(a,h)acridine	ND	50	0	0 *	50	44	89	200 *	30	30	160
Dibenz(a,h)anthracene	ND	50	38.7	77.4	50	40.1	80.2	3.55	30	30	160
Dibenz(a,j)acridine	ND	50	42.7	85.4	50	44.2	88.4	3.45	30	30	160
Dibenzofuran	ND	50	42.4	84.8	50	43.8	87.6	3.25	30	30	150
Diethyl phthalate	ND	50	43.7	87.4	50	45.9	91.8	4.91	30	30	160
Dimethyl phthalate	ND	50	44.8	89.6	50	46.4	92.8	3.51	30	30	160
Di-n-butyl phthalate	ND	50	42.2	84.4	50	45.0	90.0	6.42	30	30	160
Di-n-octyl phthalate	ND	50	42.9	85.8	50	45.6	91.2	6.10	30	20	150
Dinoseb	ND	50	49.4	98.8	50	51.6	103	4.36	30	35	140
Diphenyl oxide	ND	50	40.9	81.8	50	42.6	85.2	4.07	30	20	150
Diphenylamine	ND	100	76.4	76.4	100	81.5	81.5	6.46	30	30	150
Ethyl methanesulfonate	ND	50	35.3	70.6	50	36.1	72.2	2.24	30	30	150
Fluoranthene	ND	50	41.0	82.0	50	43.0	86.0	4.76	30	26	137
Fluorene	ND	50	41.5	83.0	50	43.4	86.8	4.48	30	30	150
Hexachlorobenzene	ND	50	41.3	82.6	50	43.2	86.4	4.50	30	20	150
Hexachlorobutadiene	ND	50	33.6	67.2	50	37.5	75.0	11.0	30	20	140
Hexachlorocyclopentadiene	ND	50	31.4	62.8	50	32.8	65.6	4.36	30	10	150
Hexachloroethane	ND	50	31.3	62.6	50	33.9	67.8	7.98	30	10	140
Hexachloropropene	ND	50	39.0	78.0	50	43.4	86.8	10.7	30	10	150
Indeno(1,2,3-cd)pyrene	ND	50	43.9	87.8	50	46.0	92.0	4.67	30	30	160
Isodrin	ND	50	36.4	72.8	50	39.2	78.4	7.41	30	30	160
Isophorone	ND	50	46.0	92.0	50	48.3	96.6	4.88	30	21	196
Isosafrole	ND	100	88.0	88.0	100	99.3	99.3	12.1	30	30	170
Methapyrilene	ND	50	0	0 *	50	0	0 *	0	30	30	250
Methyl methanesulfonate	ND	50	21.1	42.2	50	22.5	45.0	6.42	30	30	150
Methylchrysene	ND	50	39.9	79.8	50	42.6	85.2	6.55	30	30	175
Naphthalene	ND	50	39.0	78.0	50	41.0	82.0	5.00	30	21	133

Qualifiers: ND/U

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 33

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070005-01

RunID: R_100708A-5535511 Units: ug/L Analysis Date: 07/08/2010 15:58 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Nitrobenzene	ND	50	39.6	79.2	50	41.9	83.8	5.64	30	20	160
N-Nitrosodiethylamine	ND	50	38.6	77.2	50	39.5	79.0	2.30	30	30	150
N-Nitrosodimethylamine	ND	50	28.9	57.8	50	30.4	60.8	5.06	30	30	150
N-Nitroso-di-n-butylamine	ND	50	39.6	79.2	50	41.9	83.8	5.64	30	30	170
N-Nitrosodi-n-propylamine	ND	50	37.8	75.6	50	39.0	78.0	3.13	30	30	160
N-Nitrosodiphenylamine	ND	100	76.4	76.4	100	81.5	81.5	6.46	30	30	150
N-Nitrosomethylethylamine	ND	50	36.4	72.8	50	37.3	74.6	2.44	30	30	170
N-Nitrosomorpholine	ND	50	37.6	75.2	50	39.0	78.0	3.66	30	30	170
N-Nitrosopiperidine	ND	50	42.3	84.6	50	44.2	88.4	4.39	30	30	170
N-Nitrosopyrrolidine	ND	50	40.1	80.2	50	41.4	82.8	3.19	30	30	170
Octachlorostyrene	ND	50	39.1	78.2	50	42.9	85.8	9.27	30	20	175
p-Dimethylaminoazobenzene	ND	50	44.7	89.4	50	46.2	92.4	3.30	30	30	160
Pentachlorobenzene	ND	50	42.1	84.2	50	44.5	89.0	5.54	30	30	160
Pentachloroethane	ND	50	35.0	70.0	50	36.2	72.4	3.37	30	10	150
Pentachloronitrobenzene	ND	50	39.6	79.2	50	42.6	85.2	7.30	30	30	160
Pentachlorophenol	ND	50	37.7	75.4	50	42.9	85.8	12.9	30	14	176
Phenacetin	ND	50	40.9	81.8	50	43.0	86.0	5.01	30	30	160
Phenanthrene	ND	50	41.0	82.0	50	42.6	85.2	3.83	30	10	140
Phenol	ND	50	30.2	60.4	50	32.2	64.4	6.41	30	40	132
p-Phenylenediamine	ND	500	0	0 *	500	0	0 *	0	30	10	200
Pronamide	ND	50	41.9	83.8	50	44.6	89.2	6.24	30	30	300
Pyrene	ND	50	37.4	74.8	50	39.8	79.6	6.22	30	30	150
Pyridine	ND	100	0	0 *	100	0	0 *	0	30	10	150
Quinoline	ND	50	0	0 *	50	0	0 *	0	30	30	150
Safrole	ND	50	42.3	84.6	50	44.3	88.6	4.62	30	30	170
2-Methylphenol	ND	50	38.9	77.8	50	40.7	81.4	4.52	30	30	160
3 & 4-Methylphenol	ND	50	39.1	78.2	50	41.1	82.2	4.99	30	10	160
Cresols, Total	ND	100	78	78	100	82	82	4.8	30	10	160
Surr: 2,4,6-Tribromophenol	ND	150	160	107	150	174	116	8.38	30	25	154
Surr: 2-Fluorobiphenyl	ND	100	69.5	69.5	100	72.0	72.0	3.53	30	45	108
Surr: 2-Fluorophenol	ND	150	89.8	59.9	150	96.3	64.2	6.99	30	18	113
Surr: Nitrobenzene-d5	ND	100	73.7	73.7	100	77.1	77.1	4.51	30	41	113

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 34

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070097

Method: SW8270C Lab Batch ID: 100822

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070005-01

RunID: R_100708A-5535511 Units: ug/L Analysis Date: 07/08/2010 15:58 Analyst: GY

Preparation Date: 07/07/2010 10:34 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Surr: Phenol-d5	ND	150	24.7	16.5	150	37.8	25.2	41.9 *	30	10	113
Surr: Terphenyl-d14	ND	100	61.8	61.8	100	70.6	70.6	13.3	30	43	122

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Method Blank

Samples in Analytical Batch:

 Lab Sample ID
 Client Sample ID

 10070097-01B
 GSH 1

 10070097-02B
 PEN1

Analyte	Result	Rep Limit
1,1,1,2-Tetrachloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
1,1,2-Trichloroethane	ND	1.0
1,1-Dichloroethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloropropene	ND	1.0
1,2,3-Trichlorobenzene	ND	1.0
1,2,3-Trichloropropane	ND	1.0
1,2,4-Trichlorobenzene	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dibromoethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,2-Dichloroethane	ND	1.0
1,2-Dichloropropane	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,3-Butadiene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,3-Dichloropropane	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,4-Dioxane	ND	50
2,2,4-Trimethylpentane	ND	1.0
2,2-Dichloropropane	ND	1.0
2-Butanone	ND	12
2-Chloroethyl vinyl ether	ND	5.0
2-Chlorotoluene	ND	1.0
2-Hexanone	ND	12
2-Nitropropane	ND	5.0
4-Chlorotoluene	ND	1.0
4-Isopropyltoluene	ND	1.0
4-Methyl-2-pentanone	ND	12
Acetone	ND.	12
Acetonitrile	ND.	25
Acrylonitrile	ND.	5.0
Allyl chloride	ND.	1.0
alpha-Methylstyrene	ND	1.0
Benzene	ND	1.0
Benzyl chloride	ND	5.0
Bromobenzene	ND	1.0
Bromochloromethane	ND ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND ND	1.0
Bromomethane	ND ND	1.0
Butyl Acetate	ND ND	1.0
Carbon disulfide	ND ND	5.0
Carbon distillide	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Method Blank

Analyte	Result	Rep Limit
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	1.0
Chloroprene	ND	1.0
Crotonaldehyde	ND	25
Cyclohexane	ND	1.0
Cyclohexanone	ND	25
Dibromochloromethane	ND	1.0
Dibromomethane	ND	1.0
Dichlorodifluoromethane	ND	1.0
Dicyclopentadiene	ND	1.0
Diisopropyl Ether	ND	1.0
Epichlorohydrin	ND	25
Ethyl Acetate	ND	5.0
Ethyl Cyanide	ND	5.0
Ethyl Ether	ND	1.0
Ethyl methacrylate	ND	1.0
Ethylbenzene	ND	1.0
Ethylene oxide	ND	25
Hexachlorobutadiene	ND	1.0
Hexane	ND	1.0
Iodomethane	ND	1.0
Isobutyl alcohol	ND	50
Isopropylbenzene	ND	1.0
Methyl acetate	ND	5.0
Methyl methacrylate	ND	1.0
Methyl tert-butyl ether	ND	1.0
Methylcyclohexane	ND	1.0
Methylene chloride	ND	1.0
Naphthalene	ND	1.0
n-Butylbenzene	ND	1.0
n-Propylbenzene	ND	1.0
p-Diethylbenzene	ND	1.0
sec-Butylbenzene	ND	1.0
Styrene	ND	1.0
t-Butyl alcohol	ND	25
tert-Amyl methyl ether	ND	1.0
tert-Butyl ethyl ether	ND	1.0
tert-Butylbenzene	ND	1.0
Tetrachloroethene	ND	1.0
Toluene	ND	1.0
trans-1,4-Dichloro-2-Butene	ND	25
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	1.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Method Blank

Analyte	Result	Rep Limit
Vinyl acetate	ND	1.0
Vinyl chloride	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
1,2-Dichloroethene (total)	ND	1.0
1,3-Dichloropropene, Total	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	99.2	70-130
Surr: 4-Bromofluorobenzene	102.1	74-125
Surr: Toluene-d8	90.3	82-118

Laboratory Control Sample (LCS)

RunID: N_100709B-5536697 Units: ug/L Analysis Date: 07/09/2010 10:34 Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20.0	16.3	81.5	71	128
1,1,1-Trichloroethane	20.0	17.6	88.2	61	135
1,1,2,2-Tetrachloroethane	20.0	18.8	93.8	60	133
1,1,2-Trichloroethane	20.0	18.4	92.0	77	127
1,1-Dichloroethane	20.0	18.6	92.8	68	132
1,1-Dichloroethene	20.0	17.7	88.7	65	134
1,1-Dichloropropene	20.0	17.4	87.1	68	126
1,2,3-Trichlorobenzene	20.0	16.7	83.4	36	154
1,2,3-Trichloropropane	20.0	18.1	90.5	38	153
1,2,4-Trichlorobenzene	20.0	16.8	84.1	69	144
1,2,4-Trimethylbenzene	20.0	16.2	81.1	64	128
1,2-Dibromo-3-chloropropane	20.0	17.5	87.4	44	141
1,2-Dibromoethane	20.0	17.6	87.9	75	124
1,2-Dichlorobenzene	20.0	16.5	82.3	68	124

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Laboratory Control Sample (LCS)

RunID: N_100709B-5536697 Units: ug/L Analysis Date: 07/09/2010 10:34 Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2-Dichloroethane	20.0	18.4	91.8	61	138
1,2-Dichloropropane	20.0	18.4	92.2	76	123
1,3,5-Trimethylbenzene	20.0	15.9	79.6	61	127
1,3-Butadiene	20.0	12.0	59.9	10	192
1,3-Dichlorobenzene	20.0	16.5	82.7	68	127
1,3-Dichloropropane	20.0	17.7	88.6	76	125
1,4-Dichlorobenzene	20.0	16.4	81.9	68	124
1,4-Dioxane	800	720	90.0	24	172
2,2,4-Trimethylpentane	20.0	19.8	99.1	42	167
2,2-Dichloropropane	20.0	17.3	86.4	42	142
2-Butanone	20.0	21.3	107	22	183
2-Chloroethyl vinyl ether	20.0	19.1	95.4	10	179
2-Chlorotoluene	20.0	16.4	82.2	64	132
2-Hexanone	20.0	21.0	105	31	178
2-Nitropropane	20.0	16.8	84.2	10	176
4-Chlorotoluene	20.0	16.0	80.0	61	132
4-Isopropyltoluene	20.0	16.5	82.3	63	136
4-Methyl-2-pentanone	20.0	19.7	98.4	10	159
Acetone	20.0	24.4	122	10	200
Acetonitrile	200	178	88.9	29	169
Acrylonitrile	20.0	19.0	95.2	54	155
Allyl chloride	20.0	19.7	98.3	54	151
alpha-Methylstyrene	20.0	16.7	83.5	10	151
Benzene	20.0	17.1	85.7	74	123
Benzyl chloride	100	66.4	66.4	20	137
Bromobenzene	20.0	16.5	82.4	68	125
Bromochloromethane	20.0	17.9	89.7	71	124
Bromodichloromethane	20.0	19.3	96.5	72	128
Bromoform	20.0	14.9	74.5	60	128
Bromomethane	20.0	17.3	86.3	53	130
Butyl Acetate	20.0	17.0	85.0	60	140
Carbon disulfide	20.0	14.9	74.5	41	143
Carbon tetrachloride	20.0	16.5	82.3	59	142
Chlorobenzene	20.0	16.0	80.2	75	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097 Method: SW8260B Lab Batch ID: R304473

Laboratory Control Sample (LCS)

N_100709B-5536697 RunID: Units: ug/L 07/09/2010 10:34 Analysis Date: Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chloroethane	20.0	17.9	89.6	60	134
Chloroform	20.0	18.8	94.1	71	127
Chloromethane	20.0	14.3	71.6	50	139
Chloroprene	20.0	17.3	86.3	60	140
Crotonaldehyde	100	88.0	88.0	11	183
Cyclohexane	20.0	16.0	79.9	62	138
Cyclohexanone	100	105	105	10	200
Dibromochloromethane	20.0	15.7	78.4	65	130
Dibromomethane	20.0	17.6	88.0	79	124
Dichlorodifluoromethane	20.0	15.2	76.1	22	162
Dicyclopentadiene	20.0	15.5	77.7	56	130
Diisopropyl Ether	20.0	18.4	91.8	61	142
Epichlorohydrin	200	156	77.9	10	125
Ethyl Acetate	200	170	85.0	36	140
Ethyl Cyanide	20.0	19.2	96.1	38	177
Ethyl Ether	20.0	19.5	97.3	59	134
Ethyl methacrylate	20.0	17.6	88.0	63	129
Ethylbenzene	20.0	16.2	81.1	72	127
Ethylene oxide	20.0	25.6	128	10	200
Hexachlorobutadiene	20.0	17.7	88.7	45	152
Hexane	20.0	16.4	82.0	43	162
Iodomethane	20.0	16.9	84.7	58	132
Isobutyl alcohol	200	135	67.4	10	193
Isopropylbenzene	20.0	17.9	89.6	58	130
Methyl acetate	200	185	92.7	29	161
Methyl methacrylate	20.0	19.8	98.9	51	139
Methyl tert-butyl ether	40.0	36.8	92.1	63	123
Methylcyclohexane	20.0	16.8	84.2	56	144
Methylene chloride	20.0	18.2	90.8	61	135
Naphthalene	20.0	16.9	84.5	33	148
n-Butylbenzene	20.0	17.1	85.4	62	136
n-Propylbenzene	20.0	15.4	77.2	57	131
p-Diethylbenzene	20.0	18.4	92.1	53	155
sec-Butylbenzene	20.0	16.3	81.5	63	131

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Laboratory Control Sample (LCS)

RunID: N_100709B-5536697 Units: ug/L Analysis Date: 07/09/2010 10:34 Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Styrene	20.0	16.7	83.5	69	120
t-Butyl alcohol	200	175	87.3	14	165
tert-Amyl methyl ether	20.0	18.5	92.3	62	127
tert-Butyl ethyl ether	20.0	18.4	92.1	61	126
tert-Butylbenzene	20.0	16.7	83.6	59	131
Tetrachloroethene	20.0	16.1	80.7	45	173
Toluene	20.0	16.2	80.8	74	126
trans-1,4-Dichloro-2-Butene	20.0	20.0	100	10	302
Trichloroethene	20.0	17.2	85.9	79	131
Trichlorofluoromethane	20.0	17.8	89.2	49	153
Vinyl acetate	20.0	15.4	76.8	10	167
Vinyl chloride	20.0	22.2	111	51	148
cis-1,2-Dichloroethene	20.0	19.9	99.4	71	128
cis-1,3-Dichloropropene	20.0	17.8	88.8	67	128
m,p-Xylene	40.0	33.1	82.6	71	129
o-Xylene	20.0	16.9	84.6	74	130
trans-1,2-Dichloroethene	20.0	16.4	81.9	66	128
trans-1,3-Dichloropropene	20.0	16.8	84.1	60	128
1,2-Dichloroethene (total)	40.0	36.3	90.7	66	128
1,3-Dichloropropene, Total	40.0	34.6	86.5	60	128
Xylenes,Total	60	50	83	71	130
Surr: 1,2-Dichloroethane-d4	50.0	48	96.0	70	130
Surr: 4-Bromofluorobenzene	50.0	50.8	102	74	125
Surr: Toluene-d8	50.0	44.9	89.8	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070138-02

RunID: N_100709B-5536702 Units: ug/L Analysis Date: 07/09/2010 16:48 Analyst: LT

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097 SW8260B Method: Lab Batch ID: R304473

Analyte	Sample Result	MS Spike	MS Result	MS % Recovery	MSD Spike	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
		Added			Added						
1,1,1,2-Tetrachloroethane	ND	20	14.1	70.5	20	13.9	69.5	1.42	20	68	124
1,1,1-Trichloroethane	ND	20	16.0	80.2	20	15.5	77.4	3.54	20	69	123
1,1,2,2-Tetrachloroethane	ND	20	17.8	89.2	20	17.5	87.5	1.94	20	69	130
1,1,2-Trichloroethane	ND	20	17.0	84.9	20	16.9	84.6	0.313	20	75	126
1,1-Dichloroethane	ND	20	18.6	92.8	20	17.8	88.9	4.22	20	65	129
1,1-Dichloroethene	ND	20	18.6	92.8	20	17.3	86.5	7.03	22	61	139
1,1-Dichloropropene	ND	20	17.8	89.0	20	16.7	83.7	6.11	20	69	121
1,2,3-Trichlorobenzene	ND	20	14.9	74.7	20	14.3	71.5	4.43	20	53	127
1,2,3-Trichloropropane	ND	20	17.9	89.5	20	16.9	84.5	5.66	20	79	124
1,2,4-Trichlorobenzene	ND	20	15.4	77.0	20	15.0	74.9	2.76	20	58	118
1,2,4-Trimethylbenzene	ND	20	15.1	75.4	20	14.8	74.0	1.92	20	43	132
1,2-Dibromo-3-chloropropane	ND	20	14.6	73.2	20	14.7	73.7	0.713	20	46	131
1,2-Dibromoethane	ND	20	16.1	80.4	20	15.8	79.0	1.74	20	76	122
1,2-Dichlorobenzene	ND	20	15.6	78.0	20	15.1	75.7	3.01	20	74	110
1,2-Dichloroethane	ND	20	17.3	85.0	20	16.6	81.4	4.18	20	60	129
1,2-Dichloropropane	ND	20	17.3	86.5	20	16.9	84.3	2.54	20	76	116
1,3,5-Trimethylbenzene	ND	20	15.3	76.4	20	14.5	72.7	4.92	20	51	121
1,3-Butadiene	ND	20	13.8	68.8	20	12.4	61.9	10.5	20	10	181
1,3-Dichlorobenzene	ND	20	15.8	79.1	20	15.4	77.0	2.65	20	71	110
1,3-Dichloropropane	ND	20	16.8	84.2	20	16.5	82.5	2.05	20	80	119
1,4-Dichlorobenzene	ND	20	15.6	78.0	20	15.2	75.8	2.86	20	69	110
1,4-Dioxane	ND	800	602	75.2	800	603	75.4	0.264	20	10	196
2,2,4-Trimethylpentane	ND	20	18.4	92.2	20	17.4	86.9	5.90	20	48	133
2,2-Dichloropropane	ND	20	16.2	81.2	20	15.2	76.0	6.67	20	52	122
2-Butanone	ND	20	17.7	88.5	20	16.3	81.6	8.14	20	10	133
2-Chloroethyl vinyl ether	ND	20	0	0 *	20	0	0 *	0	20	10	182
2-Chlorotoluene	ND	20	15.8	78.9	20	15.1	75.5	4.38	20	69	112
2-Hexanone	ND	20	19.4	97.0	20	18.8	94.0	3.10	20	10	163
2-Nitropropane	ND	20	16.6	82.9	20	16.7	83.6	0.765	20	10	187
4-Chlorotoluene	ND	20	15.8	78.9	20	14.8	73.9	6.44	20	37	110
4-Isopropyltoluene	ND	20	15.7	78.5	20	14.9	74.7	4.95	20	65	116
4-Methyl-2-pentanone	ND	20	20.7	104	20	20.1	100	3.31	20	10	159
Acetone	ND	20	16.0	79.8	20	15.0	74.8	6.44	20	10	160
Acetonitrile	ND	200	191	95.6	200	184	91.8	4.13	20	10	200
Acrylonitrile	ND	20	19.5	97.4	20	18.4	92.0	5.67	20	45	155
Allyl chloride	ND	20	19.7	98.3	20	19.0	95.1	3.30	20	37	157
alpha-Methylstyrene	ND	20	15.0	75.0	20	14.0	69.8	7.17	20	10	142
Benzene	ND	20	16.5	82.0	20	16.0	79.5	3.12	22	70	124
Benzyl chloride	ND	100	60.4	59.6	100	58.0	57.2	4.04	20	10	200

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 42

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070138-02

RunID: N_100709B-5536702 Units: ug/L Analysis Date: 07/09/2010 16:48 Analyst: LT

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Bromobenzene	ND	20	15.5	77.3	20	14.9	74.4	3.77	20	72	111
Bromochloromethane	ND	20	17.1	85.4	20	16.7	83.4	2.32	20	73	126
Bromodichloromethane	ND	20	16.8	83.8	20	16.6	83.1	0.834	20	68	125
Bromoform	ND	20	12.0	59.9	20	12.2	60.9	1.71	20	44	132
Bromomethane	ND	20	16.6	83.1	20	16.2	81.0	2.58	20	50	140
Butyl Acetate	ND	20	16.0	79.8	20	15.6	78.0	2.30	30	60	140
Carbon disulfide	ND	20	15.7	78.7	20	14.8	73.8	6.40	20	46	143
Carbon tetrachloride	ND	20	14.1	70.4	20	13.7	68.6	2.58	20	66	126
Chlorobenzene	7.55	20	20.8	66.1 *	20	19.9	61.7 *	4.36	21	68	123
Chloroethane	ND	20	17.1	85.6	20	16.0	80.1	6.64	20	59	134
Chloroform	ND	20	17.0	85.2	20	16.5	82.6	3.14	20	68	127
Chloromethane	ND	20	14.4	72.1	20	13.8	68.8	4.64	20	51	137
Chloroprene	ND	20	17.5	87.6	20	16.0	80.0	8.97	30	60	140
Crotonaldehyde	ND	100	45.8	45.8	100	43.6	43.6	4.86	20	10	200
Cyclohexane	ND	20	17.9	89.3	20	16.7	83.6	6.55	20	61	132
Cyclohexanone	ND	100	21.0	21.0	100	20.5	20.5	2.30	20	10	109
Dibromochloromethane	ND	20	12.8	63.9	20	13.2	66.1	3.46	20	58	131
Dibromomethane	ND	20	16.1	80.6 *	20	16.0	80.0 *	0.771	20	82	123
Dichlorodifluoromethane	ND	20	15.9	79.7	20	14.9	74.5	6.71	20	35	143
Dicyclopentadiene	ND	20	14.8	73.8	20	13.7	68.7	7.07	20	14	141
Diisopropyl Ether	ND	20	17.0	85.1	20	16.7	83.6	1.69	20	53	135
Epichlorohydrin	ND	200	136	68.2	200	109	54.6	22.1 *	20	10	200
Ethyl Acetate	ND	200	160	79.9	200	152	76.0	5.06	20	10	200
Ethyl Cyanide	ND	20	23.9	119	20	22.9	115	4.01	20	10	151
Ethyl Ether	ND	20	19.0	94.8	20	18.6	93.0	1.87	20	60	135
Ethyl methacrylate	ND	20	15.8	79.1	20	16.0	79.9	1.03	20	66	125
Ethylbenzene	ND	20	16.0	79.8	20	15.5	77.7	2.70	20	76	122
Ethylene oxide	ND	20	0	0 *	20	0	0 *	0	20	25	150
Hexachlorobutadiene	ND	20	15.4	77.0	20	14.4	72.1	6.60	20	43	137
Hexane	ND	20	16.8	83.8	20	15.6	78.0	7.23	20	46	137
Iodomethane	ND	20	13.9	69.5	20	13.8	68.9	0.876	20	57	145
Isobutyl alcohol	ND	200	129	64.3	200	131	65.3	1.49	20	10	114

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 43

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304473

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070138-02

RunID: N_100709B-5536702 Units: ug/L Analysis Date: 07/09/2010 16:48 Analyst: LT

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Isopropylbenzene	ND	20	17.9	89.5	20	17.1	85.4	4.59	20	57	124
Methyl acetate	ND	200	183	91.5	200	174	86.8	5.32	20	72	120
Methyl methacrylate	ND	20	18.7	93.5	20	18.7	93.7	0.226	20	46	139
Methyl tert-butyl ether	ND	40	34.0	85.1	40	33.2	82.9	2.59	20	10	200
Methylcyclohexane	ND	20	17.8	89.1	20	16.6	83.0	7.07	20	68	127
Methylene chloride	ND	20	17.9	89.6	20	17.3	86.5	3.43	20	70	134
Naphthalene	ND	20	15.6	73.4	20	15.0	70.1	4.20	20	42	140
n-Butylbenzene	ND	20	16.7	83.5	20	15.8	78.9 *	5.69	20	82	112
n-Propylbenzene	ND	20	15.1	75.5	20	14.3	71.6 *	5.36	20	73	108
p-Diethylbenzene	ND	20	17.3	86.6	20	16.4	82.2	5.17	20	65	164
sec-Butylbenzene	ND	20	16.3	81.3	20	15.2	75.9 *	6.86	20	76	110
Styrene	ND	20	16.1	80.3	20	15.8	79.2	1.32	20	58	152
t-Butyl alcohol	ND	200	180	89.9	200	172	85.8	4.58	20	58	152
tert-Amyl methyl ether	ND	20	16.4	78.8	20	16.2	78.0	0.985	20	62	127
tert-Butyl ethyl ether	ND	20	16.8	83.9	20	16.4	82.2	2.17	20	70	123
tert-Butylbenzene	ND	20	15.5	77.7	20	14.8	74.0	4.87	20	66	120
Tetrachloroethene	8.37	20	23.9	77.5	20	22.8	72.2	4.57	20	71	130
Toluene	ND	20	16.1	80.5	20	15.6	78.0 *	3.18	24	80	117
trans-1,4-Dichloro-2-Butene	ND	20	21.5	108	20	20.9	105	2.73	20	10	309
Trichloroethene	1.93	20	18.4	82.6	20	17.8	79.2 *	3.69	21	82	121
Trichlorofluoromethane	ND	20	18.4	92.0	20	17.5	87.3	5.24	20	74	138
Vinyl acetate	ND	20	15.2	75.9	20	14.8	74.2	2.26	20	66	135
Vinyl chloride	ND	20	26.1	131	20	23.4	117	11.1	20	45	143
cis-1,2-Dichloroethene	ND	20	18.8	93.9	20	18.1	90.3	3.95	20	67	132
cis-1,3-Dichloropropene	ND	20	16.2	80.8	20	15.9	79.5	1.61	20	67	116
m,p-Xylene	ND	40	32.6	81.5	40	31.6	78.9	3.20	20	69	127
o-Xylene	ND	20	16.6	82.8 *	20	15.9	79.3 *	4.41	20	84	114
trans-1,2-Dichloroethene	ND	20	16.7	83.4	20	16.0	80.0	4.10	20	68	131
trans-1,3-Dichloropropene	ND	20	14.8	74.2	20	14.9	74.3	0.193	20	56	131
1,2-Dichloroethene (total)	ND	40	35.5	88.7	40	34.1	85.2	4.02	20	67	132
1,3-Dichloropropene, Total	ND	40	31	78	40	31	77	0.74	20	56	131
Xylenes,Total	ND	60	49.2	81.9	60	47.5	79.0	3.61	20	69	127

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097 Method: SW8260B Lab Batch ID: R304473

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070138-02

RunID: N_100709B-5536702 Units: ug/L Analysis Date: 07/09/2010 16:48 Analyst: LT

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Surr: 1,2-Dichloroethane-d4	ND	50	48.1	96.2	50	47.2	94.3	2.01	30	70	130
Surr: 4-Bromofluorobenzene	ND	50	50.9	102	50	50.5	101	0.809	30	74	125
Surr: Toluene-d8	ND	50	44.5	89.0	50	45.1	90.2	1.33	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution * - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 45

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304488

Method Blank

Samples in Analytical Batch:

RunID: MSDVOA3_100709B-5536870 Units: ug/L

Lab Sample ID Client Sample ID

Analysis Date: 07/09/2010 16:28 Analyst: LT

10070097-01B GSH 1 10070097-02B PEN1

Analyte	Result	Rep Limit
Freon-113	ND	5.0
Methacrylonitrile	ND	1.0
Tetrahydrofuran	ND	1.0
Surr: 1,2-Dichloroethane-d4	88.2	70-130
Surr: 4-Bromofluorobenzene	78.6	74-125
Surr: Toluene-d8	104.0	82-118

Laboratory Control Sample (LCS)

RunID: MSDVOA3_100709B-55368 Units: ug/L
Analysis Date: 07/09/2010 15:30 Analyst: LT

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Freon-113	20.0	16.6	83.2	53	150
Methacrylonitrile	20.0	19.6	97.8	58	141
Tetrahydrofuran	20.0	18.5	92.5	35	164
Surr: 1,2-Dichloroethane-d4	50.0	42	83.9	70	130
Surr: 4-Bromofluorobenzene	50.0	42.7	85.4	74	125
Surr: Toluene-d8	50.0	49.8	99.5	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: H1007018701

RunID: MSDVOA3_100709B-55368 Units: ug/L Analysis Date: 07/09/2010 19:51 Analyst: LT

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Freon-113	ND	10000	8720	87.2	10000	7800	78.0	11.2	20	50	155
Methacrylonitrile	ND	10000	8270	82.7	10000	8830	88.3	6.53	20	51	139

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070097 Page 46

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070097

Method: SW8260B Lab Batch ID: R304488

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: H1007018701

RunID: MSDVOA3_100709B-55368 Units: ug/L Analysis Date: 07/09/2010 19:51 Analyst: LT

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Tetrahydrofuran	ND	10000	7590	75.9	10000	8470	84.7	11.0	20	58	149
Surr: 1,2-Dichloroethane-d4	ND	25000	22300	89.3	25000	22000	88.0	1.46	30	70	130
Surr: 4-Bromofluorobenzene	ND	25000	21000	83.9	25000	20600	82.3	1.99	30	74	125
Surr: Toluene-d8	ND	25000	26900	108	25000	25600	102	5.07	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 pH - water
 WorkOrder:
 10070097

 Method:
 SW9040C
 Lab Batch ID:
 R304138

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070097-01D GSH 1 10070097-02D PEN1

Laboratory Control Sample (LCS)

 RunID:
 WET_100703F-5531917
 Units:
 pH Units

 Analysis Date:
 07/03/2010 12:00
 Analyst:
 PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
pH	7.000	7.050	100.7	98	102

Sample Duplicate

Original Sample: 10070097-01

RunID: WET_100703F-5531920 Units: pH Units

Analysis Date: 07/03/2010 16:00 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
рН	8.49	8.48	0.118	5
Temperature (oC)	20.6	20.6	0	5

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 Chemical Oxygen Demand
 WorkOrder:
 10070097

 Method:
 SM5220 C
 Lab Batch ID:
 R304264

Method Blank

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070097-01H GSH 1 10070097-02H PEN1

Analyte	Result	Rep Limit
Chemical Oxygen Demand	ND	3.0

Laboratory Control Sample (LCS)

RunID: WET_100707B-5533628 Units: mg/L
Analysis Date: 07/07/2010 11:00 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chemical Oxygen Demand	104.0	101.3	97.37	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070142-01

RunID: WET_100707B-5533630 Units: mg/L
Analysis Date: 07/07/2010 11:00 Analyst: PAC

	Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Che	emical Oxygen Demand	37.97	50	81.01	86.08	50	81.01	86.08	0	10	80	120

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Biochemical Oxygen Demand - 5 Days WorkOrder: 10070097

Method: SM5210 B Lab Batch ID: R304319

Method Blank

Samples in Analytical Batch:

RunID: WET_100703G-5534565 Units: mg/L
Analysis Date: 07/03/2010 11:30 Analyst: PAC

Lab Sample ID

10070097-01F

Client Sample ID

GSH 1

10070097-01F CONT

Analyte	Result	Rep Limit
Biochemical Oxygen Demand	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100703G-5534567 Units: mg/L Analysis Date: 07/03/2010 11:30 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand	198.0	191.3	96.62	83.7	114

Sample Duplicate

Original Sample: 10070088-01

RunID: WET_100703G-5534568 Units: mg/L
Analysis Date: 07/03/2010 11:30 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Biochemical Oxygen Demand	3.03	3.06	0.985	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Carbonaceous Biochemical Oxygen Demand - 5 Days WorkOrder: 10070097

Method: SM5210 B Lab Batch ID: R304321

Method Blank

Samples in Analytical Batch:

RunID: WET_100703H-5534589 Units: mg/L
Analysis Date: 07/03/2010 11:30 Analyst: PAC

Lab Sample IDClient Sample ID10070097-01GGSH 1

10070097-01G GSH 1 10070097-02G PEN1

Analyte	Result	Rep Limit
Biochemical Oxygen Demand, Carbonaceous	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100703H-5534591 Units: mg/L Analysis Date: 07/03/2010 11:30 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand, Carbonac	198.0	191.3	96.62	83.7	114

Sample Duplicate

Original Sample: 10070097-01

RunID: WET_100703H-5534593 Units: mg/L
Analysis Date: 07/03/2010 16:00 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Biochemical Oxygen Demand, Carbonac	2.58	2.59	0.387	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Ignitability WorkOrder: 10070097
Method: SW1010A Lab Batch ID: R304742

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070097-01E GSH 1 10070097-02E PEN1

Laboratory Control Sample (LCS)

RunID: WET_100715F-5540744 Units: °F
Analysis Date: 07/15/2010 13:00 Analyst: EB1

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Ignitability	81.00	81.06	100.1	97.5	102.5

Sample Duplicate

Original Sample: 10070097-01

RunID: WET_100715F-5540757 Units: °F
Analysis Date: 07/15/2010 13:00 Analyst: EB1

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Ignitability	212	212	0	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Wo	orkorder:	10070097			Received By:	BF	
Da	te and Time Received:	7/3/2010 3:15:00 AM			Carrier name:	Client	
Tei	mperature:	4.5°C			Chilled by:	Water Ice	
1.	Shipping container/co	oler in good condition?	Yes	✓	No 🗆	Not Present	
2.	Custody seals intact o	on shippping container/cooler?	Yes	✓	No 🗆	Not Present	
3.	Custody seals intact o	on sample bottles?	Yes		No 🗆	Not Present	✓
4.	Chain of custody pres	ent?	Yes	✓	No 🗆		
5.	Chain of custody sign	ed when relinquished and received?	Yes	✓	No 🗆		
6.	Chain of custody agre	es with sample labels?	Yes	✓	No 🗆		
7.	Samples in proper cor	ntainer/bottle?	Yes	✓	No 🗆		
8.	Sample containers into	act?	Yes	✓	No 🗆		
9.	Sufficient sample volu	me for indicated test?	Yes	✓	No 🗆		
10.	All samples received v 1) pH received outside at the time of sampling	e method holding time. Should be immediately	Yes		No 🗹		
11.	Container/Temp Blank	temperature in compliance?	Yes	✓	No 🗌		
12.	Water - VOA vials have	e zero headspace?	Yes	✓	No U	ials Not Present	
13.	Water - Preservation c	checked upon receipt (except VOA*)?	Yes	✓	No 🗆	Not Applicable	
	*VOA Preservation Ch	ecked After Sample Analysis					
	SPL Representativ	ve: Brown, Electa	Cont	act Date & T	ime: 7/7/2010 7:28:00	AM	
	Client Name Contacte	ed: Justin Sternberg					
	Non Conformance Issues:						
	Client Instructions: Em	nail client the pH received outside of method hol	ding tin	ne, SPL analy	ze the samples and na	arrated holding time	

☐ 459 Hughes Drive Traverse City, MI 49686 (231) 947-5777

500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775

		-				SPL Workorder No.	er No.		Ŏ,	7968	(°)	
10000	SPL, Inc.	10sha sternberra she can	000	Shr (0							(
Analysis Reques	Analysis Request & Chain of Custody Record		0		·	100700	tien		page	-	of	
Client Name: ABC-13/Bur	RHETT FAZER CL		Ě.	bottle size	pres.			Requested		Analysis	is	
3310 B	SNN E		ιρςι					-		-	H	_
City HOUSTON	State TX	Zp 770050	0=X					· · · · · · · · · · · · · · · · · · ·				
Phone/Fax: 73 666- 7	EILa		re >		ε	SIS						
Client Contact: NSTON STEENBER	トラング Email: JUS	nn-sternbezza	ioou [] O	-X 7 Z (lei qure	грец [ИО	aine					2 >	
Project Name/No.: GULT WATER	DAY THE	ysis ale	9=∃		H=7	juo(<u> </u>					Ŀ
Site Name: PENSACOA			əã	1=9 7 \) 10		ŀ	7		<u> </u>	9
Site Location: Tens acola, Fil			ater Spul	ass ter		190	C	14	1 1	IC		Ę S
Invoice To: JUSTIN STERNBER	Azc - 13	666 07	%=\ %=\ %=\	d=0 g=0 l=0 l=0	ZH= =HC	S' Juin	V		15			
SAMPLE ID	DATE	TIME comp gr	S) .		1 (-		_)	<u>}</u>
PENT	7-2-10	^	×	7		X G						
PEN3 1	01-2-1	<u>×</u>	3	아 ~		<u>എ</u>	X					
Par W	7.2-10	×	3	V 40		3		×				
PENSE 1	d-2-L	×	3	7				X				
日如西	01-2-7	×	3	<u>2</u>					X			
西区工	01-2-1	×	3	×		-				X		
日 阿田	7.2-10	X	3 X	75						^		
T W NOA	01-2.2	×	3	×							X	
FN 42	72.10		3	4	Ħ							X
Client/Consultant Remarks:		Laboratory remarks:							Intact? Ice? Temp:			ZZ
Requiested TAT Speci	Special Reporting Requirements	Results: Fax Email	n S Prof S		Detection	Special Detection Limits (specify):	pecify):			PM rev	PM review (initial):	nitial):
tract	Standard QC Level 3 QC Level 4 QC	TX TRRP	LA RECAP									
<u> </u>	1. Relinquished by Sampler:	4	date 7/3/1	tine	<u>6</u>	2. Received by:	by:		1		_	
3 Business Days 3. Re	3. Relinquished by:	- G	date 7 0	time	14	4. Received by:	by:					
Other 5. Re Rush TAT requires prior notice	5. Relinquished by:	77	date	time	9	6. Received by Laboratory:	by Labo	ratory:				
☐ 8880 Interchange Drive Houston, TX 77054 (713) 660-0901	ve)-0901	Scott, LA 70583 (337) 237-4775	Caffery Pa 337) 237-4	urkway 775		Į į	averse	☐ 459 City, M	☐ 459 Hughes Drive Traverse City MI 49686 (231) 947-5777	Drive (231)	947-5	777

3310 Bissonnet Street

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

10070363

Report To: Project Name: ABC 13 Gulf Water Analysis

ABC 13 Site: Galveston, TX

Justin Sternberg <u>Site Address:</u>

Houston PO Number:

Texas State: Texas

77005- <u>State Cert. No.:</u> T104704205-10-4

ph: (713) 578-2900 fax: <u>Date Reported:</u> 7/26/2010

This Report Contains A Total Of 40 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: ABC 13

Certificate of Analysis Number:

10070363

Report To: Project Name: **ABC 13 Gulf Water Analysis** Site: Galveston, TX **ABC 13 Justin Sternberg** Site Address: 3310 Bissonnet Street PO Number: Houston State: Texas **Texas** 77005-T104704205-10-4 State Cert. No.: ph: (713) 578-2900 fax: **Date Reported:** 7/26/2010

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSIS AND EXCEPTIONS:

SW8260B Volatile Organics:

The results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

SW8270C Semivolatile Organics:

No exceptions noted.

TX1005 TPH:

No exceptions noted.

Wet Chemistry:

pH analysis was performed outside the analytical holding time. The analysis was performed as soon as possible after sample receipt.

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

ma West

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of

10070363 Page 1

7/26/2010

Sonia West

Date

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Case Narrative for: ABC 13

Certificate of Analysis Number:

10070363

Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Donia West

10070363 Page 2

7/26/2010

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

Certificate of Analysis Number:

10070363

ABC 13 Report To:

Fax To:

Justin Sternberg

3310 Bissonnet Street

Houston

Texas

77005-

ph: (713) 578-2900

fax:

Project Name:

ABC 13 Gulf Water Analysis

Site:

Galveston, TX

Site Address:

PO Number:

State:

Texas

State Cert. No.: T104704205-10-4

Date Reported: 7/26/2010

Client Sample ID	Lab Sample ID	Matrix	Date Collected	Date Received	COC ID	HOLD
GLV13	10070363-01	Water	07/14/2010 12:40	7/14/2010 3:17:00 PM	324689	

Donia West

7/26/2010

Date

Sonia West

Senior Project Manager

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen **Quality Assurance Officer**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

				Site:	Galv	veston,	тх				
Analyses/Method	Res	ult	QUAL	Rep.Li	mit		Dil. Fac	tor Date Ana	lyzed	Analyst	Seq. #
BIOCHEMICAL OXYGE	EN DEMAND - 5 D	AYS	3			MCL		SM5210 B	Un	its: mg/l	L
Biochemical Oxygen Dem	and N	D			2		1	07/14/10	16:30	PAC	5543550
CARBONACEOUS BIO	CHEMICAL OXY	EN	DEMAN) - 5 DAY	,	MCL		SM5210 B	Un	its: mg/l	L
Biochemical Oxygen Dem Carbonaceous	and, N	D			2		1	07/14/10	16:30	PAC	5543556
CHEMICAL OXYGEN	DEMAND					MCL		SM5220 C	Un	its: mg/l	L
Chemical Oxygen Demand	d 23	33			12		4	07/15/10	12:30	PAC	5540830
IGNITABILITY						MCL	•	SW1010A	Un	its: °F	
Ignitability	>2	12			70		1	07/19/10	14:00	EB1	5543698
OIL AND GREASE BY	METHOD 1664					MCL	ı	1664A	Un	its: mg/l	<u> </u>
Oil and Grease	N	D			5		1	07/26/10	15:15	EAG	5548839
Prep Method	Prep Date	F	Prep Initials	Prep Fac	or						
	07/26/2010 11:10		* **	1.00							
PH - WATER						MCL		SW9040C	Un	its: pH \	Jnits
рН	8.2	28			0.1		1	07/14/10	16:15	PAC	5539892
Temperature (oC)	25	.4			0.1		1	07/14/10	16:15	PAC	5539892

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

Site: Galveston, TX

Analyses/Method	Result (QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
SEMIVOLATILE ORGANICS B	BY METHOD 827	OC 20		MCL SV	V8270C Un	its: ug/L	
1,2,4,5-Tetrachlorobenzene	ND		10	1	07/16/10 12:00	GY	5543082
1,2,4-Trichlorobenzene	ND		5	1	07/16/10 12:00	GY	5543082
1,2-Dichlorobenzene	ND		5	1	07/16/10 12:00	GY	5543082
1,2-Diphenylhydrazine	ND		10	1	07/16/10 12:00	GY	5543082
1,3,5-Trinitrobenzene	ND		10	1	07/16/10 12:00	GY	5543082
1,3-Dichlorobenzene	ND		5	1	07/16/10 12:00	GY	5543082
1,3-Dinitrobenzene	ND		10	1	07/16/10 12:00	GY	5543082
1,4-Dichlorobenzene	ND		5	1	07/16/10 12:00	GY	5543082
1-Methylnaphthalene	ND		5	1	07/16/10 12:00	GY	5543082
2,3,4,6-Tetrachlorophenol	ND		10	1	07/16/10 12:00	GY	5543082
2,4,5-Trichlorophenol	ND		10	1	07/16/10 12:00	GY	5543082
2,4,6-Trichlorophenol	ND		5	1	07/16/10 12:00	GY	5543082
2,4-Dichlorophenol	ND		5	1	07/16/10 12:00	GY	5543082
2,4-Dimethylphenol	ND		5	1	07/16/10 12:00	GY	5543082
2,4-Dinitrophenol	ND		25	1	07/16/10 12:00	GY	5543082
2,4-Dinitrotoluene	ND		5	1	07/16/10 12:00	GY	5543082
2,6-Dichlorophenol	ND		50	1	07/16/10 12:00	GY	5543082
2,6-Dimethylphenol	ND		5	1	07/16/10 12:00	GY	5543082
2,6-Dinitrotoluene	ND		5	1	07/16/10 12:00	GY	5543082
2-Acetylaminofluorene	ND		10	1	07/16/10 12:00	GY	5543082
2-Chloronaphthalene	ND		5	1	07/16/10 12:00	GY	5543082
2-Chlorophenol	ND		5	1	07/16/10 12:00	GY	5543082
2-Methylnaphthalene	ND		5	1	07/16/10 12:00	GY	5543082
2-Nitroaniline	ND		25	1	07/16/10 12:00	GY	5543082
2-Nitrophenol	ND		5	1	07/16/10 12:00	GY	5543082
3,3´-Dichlorobenzidine	ND		10	1	07/16/10 12:00	GY	5543082
3-Nitroaniline	ND		25	1	07/16/10 12:00	GY	5543082
4,6-Dinitro-2-methylphenol	ND		25	1	07/16/10 12:00	GY	5543082
4-Chloro-3-methylphenol	ND		5	1	07/16/10 12:00	GY	5543082
4-Chloroaniline	ND		5	1	07/16/10 12:00	GY	5543082
4-Chlorophenyl phenyl ether	ND		5	1	07/16/10 12:00	GY	5543082
4-Nitroaniline	ND		25	1	07/16/10 12:00	GY	5543082
4-Nitrophenol	ND		25	1	07/16/10 12:00	GY	5543082
4-Nitroquinoline-1-oxide	ND		10	1	07/16/10 12:00	GY	5543082
Acenaphthene	ND		5	1	07/16/10 12:00	GY	5543082
Acenaphthylene	ND		5	1	07/16/10 12:00	GY	5543082
Acetophenone	ND		5	1	07/16/10 12:00	GY	5543082
Aniline	ND		5	1	07/16/10 12:00	GY	5543082
Anthracene	ND		5	1	07/16/10 12:00	GY	5543082

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10070363 Page 5 7/26/2010 4:48:40 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

			Site: Galve	eston, TX			
Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Benz(a)anthracene	ND		5	1	07/16/10 12:00	GY	5543082
Benzidine	ND		20	1	07/16/10 12:00	GY	5543082
Benzo(a)pyrene	ND		5	1	07/16/10 12:00	GY	5543082
Benzo(b)fluoranthene	ND		5	1	07/16/10 12:00	GY	5543082
Benzo(g,h,i)perylene	ND		5	1	07/16/10 12:00	GY	5543082
Benzo(k)fluoranthene	ND		5	1	07/16/10 12:00	GY	5543082
Benzoic acid	ND		25	1	07/16/10 12:00	GY	5543082
Benzyl alcohol	ND		5	1	07/16/10 12:00	GY	5543082
Biphenyl	ND		50	1	07/16/10 12:00	GY	5543082
Bis(2-chloroethoxy)methane	ND		5	1	07/16/10 12:00	GY	5543082
Bis(2-chloroethyl)ether	ND		5	1	07/16/10 12:00	GY	5543082
Bis(2-chloroisopropyl)ether	ND		5	1	07/16/10 12:00	GY	5543082
Bis(2-ethylhexyl)phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Butyl benzyl phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Chrysene	ND		5	1	07/16/10 12:00	GY	5543082
Dibenz(a,h)acridine	ND		25	1	07/16/10 12:00	GY	5543082
Dibenz(a,h)anthracene	ND		5	1	07/16/10 12:00	GY	5543082
Dibenz(a,j)acridine	ND		5	1	07/16/10 12:00	GY	5543082
Dibenzofuran	ND		5	1	07/16/10 12:00	GY	5543082
Diethyl phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Dimethyl phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Di-n-butyl phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Di-n-octyl phthalate	ND		5	1	07/16/10 12:00	GY	5543082
Dinoseb	ND		10	1	07/16/10 12:00	GY	5543082
Diphenylamine	ND		10	1	07/16/10 12:00	GY	5543082
Fluoranthene	ND		5	1	07/16/10 12:00	GY	5543082
Fluorene	ND		5	1	07/16/10 12:00	GY	5543082
Hexachlorobenzene	ND		5	1	07/16/10 12:00	GY	5543082
Hexachlorobutadiene	ND		5	1	07/16/10 12:00	GY	5543082
Hexachlorocyclopentadiene	ND		5	1	07/16/10 12:00	GY	5543082
Hexachloroethane	ND		5	1	07/16/10 12:00	GY	5543082
Hexachloropropene	ND		5	1	07/16/10 12:00	GY	5543082
Indeno(1,2,3-cd)pyrene	ND		5	1	07/16/10 12:00	GY	5543082
Isophorone	ND		5	1	07/16/10 12:00	GY	5543082
Naphthalene	ND		5	1	07/16/10 12:00	GY	5543082
Nitrobenzene	ND		5	1	07/16/10 12:00	GY	5543082
N-Nitrosodiethylamine	ND		5	1	07/16/10 12:00	GY	5543082
N-Nitrosodimethylamine	ND		5	1	07/16/10 12:00	GY	5543082
N-Nitroso-di-n-butylamine	ND		5	1	07/16/10 12:00	GY	5543082
N-Nitrosodi-n-propylamine	ND		5	1	07/16/10 12:00	GY	5543082
1 17							

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

			Site:	Ga	lveston,	TX			
Analyses/Method	Result	QUAL	Rep.	Limit		Dil. Factor	Date Analyzed	Analyst	Seq. #
N-Nitrosodiphenylamine	ND			5		1	07/16/10 12:00	GY	5543082
N-Nitrosomethylethylamine	ND			5		1	07/16/10 12:00	GY	5543082
N-Nitrosomorpholine	ND			25		1	07/16/10 12:00	GY	5543082
N-Nitrosopiperidine	ND			5		1	07/16/10 12:00	GY	5543082
N-Nitrosopyrrolidine	ND			5		1	07/16/10 12:00	GY	5543082
Pentachlorobenzene	ND			5		1	07/16/10 12:00	GY	5543082
Pentachloroethane	ND			10		1	07/16/10 12:00	GY	5543082
Pentachlorophenol	ND			25		1	07/16/10 12:00	GY	5543082
Phenanthrene	ND			5		1	07/16/10 12:00	GY	5543082
Phenol	ND			5		1	07/16/10 12:00	GY	5543082
Pyrene	ND			5		1	07/16/10 12:00	GY	5543082
Pyridine	ND			5		1	07/16/10 12:00	GY	5543082
Quinoline	ND			50		1	07/16/10 12:00	GY	5543082
2-Methylphenol	ND			5		1	07/16/10 12:00	GY	5543082
3 & 4-Methylphenol	ND			5		1	07/16/10 12:00	GY	5543082
Cresols, Total	ND			5		1	07/16/10 12:00	GY	5543082
Surr: 2,4,6-Tribromophenol	96.2		% 25	5-154		1	07/16/10 12:00	GY	5543082
Surr: 2-Fluorobiphenyl	86.9		% 45	5-108		1	07/16/10 12:00	GY	5543082
Surr: 2-Fluorophenol	74.2		% 18	8-113		1	07/16/10 12:00	GY	5543082
Surr: Nitrobenzene-d5	89.9		% 41	1-113		1	07/16/10 12:00	GY	5543082
Surr: Phenol-d5	68.6		% 10	0-113		1	07/16/10 12:00	GY	5543082
Surr: Terphenyl-d14	98.0		% 43	3-122		1	07/16/10 12:00	GY	5543082

Prep Method	Prep Date	Prep Initials	Prep Factor
SW3510C	07/15/2010 14:49	N_M	1.00

TPH TEXAS 1005			MCL	TX1005	Units: mg/L	
C6-C12	ND	4.9	1	07/22/10	2:59 NW	5546383
>C12-C28	ND	4.9	1	07/22/10	2:59 NW	5546383
>C28-C35	ND	4.9	1	07/22/10	2:59 NW	5546383
Total TPH (C6-C35)	ND	4.9	1	07/22/10	2:59 NW	5546383
Surr: 1-Chlorooctane	105	% 70-130	1	07/22/10	2:59 NW	5546383
Surr: o-Terphenyl	89.5	% 70-130	1	07/22/10	2:59 NW	5546383

Prep Method	Prep Date	Prep Initials	Prep Factor
TX1005	07/19/2010 12:15	LSB	0.98

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10070363 Page 7 7/26/2010 4:48:42 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

Site: Galveston, TX

Analyses/Method	Result	QUAL	Rep.Limit	Dil. Factor	Date Analyze	d Analyst	Seq. #
VOLATILE ORGANICS BY MET	THOD 8260B			MCL S	W8260B	Units: ug/L	
1,1,1,2-Tetrachloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1,1-Trichloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1,2,2-Tetrachloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1,2-Trichloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1-Dichloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1-Dichloroethene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,1-Dichloropropene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2,3-Trichlorobenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2,3-Trichloropropane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2,4-Trichlorobenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2,4-Trimethylbenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2-Dibromo-3-chloropropane	ND		5	1	07/15/10 20:3	37 JC	5542288
1,2-Dibromoethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2-Dichlorobenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2-Dichloroethane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,2-Dichloropropane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,3,5-Trimethylbenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,3-Butadiene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,3-Dichlorobenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,3-Dichloropropane	ND		1	1	07/15/10 20:3	37 JC	5542288
1,4-Dichlorobenzene	ND		1	1	07/15/10 20:3	37 JC	5542288
1,4-Dioxane	ND		50	1	07/15/10 20:3	37 JC	5542288
2,2,4-Trimethylpentane	ND		1	1	07/15/10 20:3	37 JC	5542288
2,2-Dichloropropane	ND		1	1	07/15/10 20:3	37 JC	5542288
2-Butanone	ND		12	1	07/15/10 20:3	37 JC	5542288
2-Chloroethyl vinyl ether	ND J		5	1	07/15/10 20:3	37 JC	5542288
2-Chlorotoluene	ND		1	1	07/15/10 20:3	37 JC	5542288
2-Hexanone	ND		12	1	07/15/10 20:3	37 JC	5542288
2-Nitropropane	ND		5	1	07/15/10 20:3	37 JC	5542288
4-Chlorotoluene	ND		1	1	07/15/10 20:3	37 JC	5542288
4-Isopropyltoluene	ND		1	1	07/15/10 20:3	37 JC	5542288
4-Methyl-2-pentanone	ND		12	1	07/15/10 20:3	37 JC	5542288
Acetone	ND		12	1	07/15/10 20:3	37 JC	5542288
Acetonitrile	ND		25	1	07/15/10 20:3	37 JC	5542288
Acrylonitrile	ND		5	1	07/15/10 20:3	37 JC	5542288
Allyl chloride	ND		1	1	07/15/10 20:3	37 JC	5542288
alpha-Methylstyrene	ND		1	1	07/15/10 20:3	37 JC	5542288
Benzene	ND		1	1	07/15/10 20:3	37 JC	5542288
Benzyl chloride	ND		5	1	07/15/10 20:3	37 JC	5542288

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

10070363 Page 8 7/26/2010 4:48:43 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

Dichlorodifluoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288			Site	: Galvest	ton, TX			
Bromochloromethane	Analyses/Method	Result	QUAL Re	p.Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Bromodichloromethane	Bromobenzene	ND		1	1	07/15/10 20:37	JC	5542288
Bromoform ND	Bromochloromethane	ND		1	1	07/15/10 20:37	JC	5542288
BryAcetate	Bromodichloromethane	ND		1	1	07/15/10 20:37	JC	5542288
Butyl Acetate	Bromoform	ND		1	1	07/15/10 20:37	JC	5542288
Carbon disulfide ND 5 1 07/15/10 20:37 JC 5542288 Carbon tetrachloride ND 1 1 07/15/10 20:37 JC 5542288 Chlorobenzene ND 1 1 07/15/10 20:37 JC 5542288 Chloroform ND 1 1 07/15/10 20:37 JC 5542288 Chloroform ND 1 1 07/15/10 20:37 JC 5542288 Chlorogrene ND 1 1 07/15/10 20:37 JC 5542288 Chloroprene ND 1 1 07/15/10 20:37 JC 5542288 Crotonaldehyde ND 25 1 07/15/10 20:37 JC 5542288 Cyclohexane ND 1 1 07/15/10 20:37 JC 5542288 Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288	Bromomethane	ND		1	1	07/15/10 20:37	JC	5542288
Carbon tetrachloride ND 1 1 07/15/10 20:37 JC 5542288 Chlorobenzene ND 1 1 07/15/10 20:37 JC 5542288 Chlorotethane ND 1 1 07/15/10 20:37 JC 5542288 Chloroform ND 1 1 07/15/10 20:37 JC 5542288 Chloroformethane ND 1 1 07/15/10 20:37 JC 5542288 Chloroprene ND 1 1 07/15/10 20:37 JC 5542288 Chloroprene ND 1 1 07/15/10 20:37 JC 5542288 Cyclohexane ND 1 1 07/15/10 20:37 JC 5542288 Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Di	Butyl Acetate	ND		1	1	07/15/10 20:37	JC	5542288
Chlorobenzene	Carbon disulfide	ND		5	1	07/15/10 20:37	JC	5542288
Chloroethane	Carbon tetrachloride	ND		1	1	07/15/10 20:37	JC	5542288
Chloroform	Chlorobenzene	ND		1	1	07/15/10 20:37	JC	5542288
Chloromethane ND 1 1 07/15/10 20:37 JC 5542288 Chloroprene ND 1 1 07/15/10 20:37 JC 5542288 Chloroprene ND 1 1 07/15/10 20:37 JC 5542288 Crotonaldehyde ND 25 1 07/15/10 20:37 JC 5542288 Cyclohexane ND 1 1 07/15/10 20:37 JC 5542288 Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Elpichlorohydrin ND 1 1 07/15/10 20:37 JC 5542288 Elpichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Catetae ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC	Chloroethane	ND		1	1	07/15/10 20:37	JC	5542288
Chloroprene	Chloroform	ND		1	1	07/15/10 20:37	JC	5542288
Crotonaldehyde ND 25 1 07/15/10 20:37 JC 5542288 Cyclohexane ND 1 1 07/15/10 20:37 JC 5542288 Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromoethane ND 1 1 07/15/10 20:37 JC 5542288 Discopopyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethylorohydrin ND 25 1 07/15/10 20:37 JC 5542288	Chloromethane	ND		1	1	07/15/10 20:37	JC	5542288
Cyclohexane ND 1 1 07/15/10 20:37 JC 5542288 Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Dichlorodifliuoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Eipichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542	Chloroprene	ND		1	1	07/15/10 20:37	JC	5542288
Cyclohexanone ND 25 1 07/15/10 20:37 JC 5542288 Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Dichlorodifluoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288	Crotonaldehyde	ND		25	1	07/15/10 20:37	JC	5542288
Dibromochloromethane ND 1 1 07/15/10 20:37 JC 5542288 Dibromomethane ND 1 1 07/15/10 20:37 JC 5542288 Dichlorodiffuoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Eipichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC		ND		1	1	07/15/10 20:37	JC	5542288
Dibrommethane ND 1 1 07/15/10 20:37 JC 5542288 Dichlorodiffluoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Eipichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 55422	Cyclohexanone	ND		25	1	07/15/10 20:37	JC	5542288
Dichlorodifiluoromethane ND 1 1 07/15/10 20:37 JC 5542288 Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288<	Dibromochloromethane	ND		1	1	07/15/10 20:37	JC	5542288
Dicyclopentadiene ND 1 1 07/15/10 20:37 JC 5542288 Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288	Dibromomethane	ND		1	1	07/15/10 20:37	JC	5542288
Diisopropyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 <	Dichlorodifluoromethane	ND		1	1	07/15/10 20:37	JC	5542288
Epichlorohydrin ND 25 1 07/15/10 20:37 JC 5542288 Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 5 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 <tr< td=""><td>Dicyclopentadiene</td><td>ND</td><td></td><td>1</td><td>1</td><td>07/15/10 20:37</td><td>JC</td><td>5542288</td></tr<>	Dicyclopentadiene	ND		1	1	07/15/10 20:37	JC	5542288
Ethyl Acetate ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 5 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 5 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 5 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 5 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 1 1 07/15/10 20:37 JC 5542288	Diisopropyl Ether	ND		1	1	07/15/10 20:37	JC	5542288
Ethyl Cyanide ND 5 1 07/15/10 20:37 JC 5542288 Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 1 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288	Epichlorohydrin	ND		25	1	07/15/10 20:37	JC	5542288
Ethyl Ether ND 1 1 07/15/10 20:37 JC 5542288 Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Idomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 <	Ethyl Acetate	ND		5	1	07/15/10 20:37	JC	5542288
Ethyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Isodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 <t< td=""><td>Ethyl Cyanide</td><td>ND</td><td></td><td>5</td><td>1</td><td>07/15/10 20:37</td><td>JC</td><td>5542288</td></t<>	Ethyl Cyanide	ND		5	1	07/15/10 20:37	JC	5542288
Ethylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Iodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 <t< td=""><td>Ethyl Ether</td><td>ND</td><td></td><td>1</td><td>1</td><td>07/15/10 20:37</td><td>JC</td><td>5542288</td></t<>	Ethyl Ether	ND		1	1	07/15/10 20:37	JC	5542288
Ethylene oxide ND 25 1 07/15/10 20:37 JC 5542288 Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Iodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288	Ethyl methacrylate	ND		1	1	07/15/10 20:37	JC	5542288
Freon-113 ND 5 1 07/15/10 20:37 JC 5542288 Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Iodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Ethylbenzene	ND		1	1	07/15/10 20:37	JC	5542288
Hexachlorobutadiene ND 1 1 07/15/10 20:37 JC 5542288 Hexane ND 1 1 07/15/10 20:37 JC 5542288 Iodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Ethylene oxide	ND		25	1	07/15/10 20:37	JC	5542288
Hexane ND 1 1 07/15/10 20:37 JC 5542288 Iodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Freon-113	ND		5	1	07/15/10 20:37	JC	5542288
lodomethane ND 1 1 07/15/10 20:37 JC 5542288 Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Hexachlorobutadiene	ND		1	1	07/15/10 20:37	JC	5542288
Isobutyl alcohol ND 50 1 07/15/10 20:37 JC 5542288 Isopropylbenzene ND 1 1 07/15/10 20:37 JC 5542288 Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Hexane	ND		1	1	07/15/10 20:37	JC	5542288
Isopropylbenzene	Iodomethane	ND		1	1	07/15/10 20:37	JC	5542288
Methacrylonitrile ND 1 1 07/15/10 20:37 JC 5542288 Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Isobutyl alcohol	ND		50	1	07/15/10 20:37	JC	5542288
Methyl acetate ND 5 1 07/15/10 20:37 JC 5542288 Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Isopropylbenzene	ND		1	1	07/15/10 20:37	JC	5542288
Methyl methacrylate ND 1 1 07/15/10 20:37 JC 5542288 Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Methacrylonitrile	ND		1	1	07/15/10 20:37	JC	5542288
Methyl tert-butyl ether ND 1 1 07/15/10 20:37 JC 5542288 Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Methyl acetate	ND		5	1	07/15/10 20:37	JC	5542288
Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Methyl methacrylate	ND		1	1	07/15/10 20:37	JC	5542288
Methylcyclohexane ND 1 1 07/15/10 20:37 JC 5542288	Methyl tert-butyl ether	ND		1	1	07/15/10 20:37	JC	5542288
	 	ND		1	1	07/15/10 20:37	JC	5542288
	Methylene chloride	ND		1	1	07/15/10 20:37	JC	5542288

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: GLV13 Collected: 07/14/2010 12:40 SPL Sample ID: 10070363-01

			Site:	Galvest	on, TX			
Analyses/Method	Result	QUAL	Rep.	Limit	Dil. Factor	Date Analyzed	Analyst	Seq. #
Naphthalene	ND			1	1	07/15/10 20:37	JC	5542288
n-Butylbenzene	ND			1	1	07/15/10 20:37	JC	5542288
n-Propylbenzene	ND			1	1	07/15/10 20:37	JC	5542288
p-Diethylbenzene	ND			1	1	07/15/10 20:37	JC	5542288
sec-Butylbenzene	ND			1	1	07/15/10 20:37	JC	5542288
Styrene	ND			1	1	07/15/10 20:37	JC	5542288
t-Butyl alcohol	ND			25	1	07/15/10 20:37	JC	5542288
tert-Amyl methyl ether	ND			1	1	07/15/10 20:37	JC	5542288
tert-Butyl ethyl ether	ND			1	1	07/15/10 20:37	JC	5542288
tert-Butylbenzene	ND			1	1	07/15/10 20:37	JC	5542288
Tetrachloroethene	ND			1	1	07/15/10 20:37	JC	5542288
Tetrahydrofuran	ND			1	1	07/15/10 20:37	JC	5542288
Toluene	ND			1	1	07/15/10 20:37	JC	5542288
trans-1,4-Dichloro-2-Butene	ND			25	1	07/15/10 20:37	JC	5542288
Trichloroethene	ND			1	1	07/15/10 20:37	JC	5542288
Trichlorofluoromethane	ND			1	1	07/15/10 20:37	JC	5542288
Vinyl acetate	ND			1	1	07/15/10 20:37	JC	5542288
Vinyl chloride	ND			1	1	07/15/10 20:37	JC	5542288
cis-1,2-Dichloroethene	ND			1	1	07/15/10 20:37	JC	5542288
cis-1,3-Dichloropropene	ND			1	1	07/15/10 20:37	JC	5542288
m,p-Xylene	ND			2	1	07/15/10 20:37	JC	5542288
o-Xylene	ND			1	1	07/15/10 20:37	JC	5542288
trans-1,2-Dichloroethene	ND			1	1	07/15/10 20:37	JC	5542288
trans-1,3-Dichloropropene	ND			1	1	07/15/10 20:37	JC	5542288
1,2-Dichloroethene (total)	ND			1	1	07/15/10 20:37	JC	5542288
Xylenes,Total	ND			1	1	07/15/10 20:37	JC	5542288
1,3-Dichloropropene, Total	ND			1	1	07/15/10 20:37	JC	5542288
Surr: 1,2-Dichloroethane-d4	105		% 70	0-130	1	07/15/10 20:37	JC	5542288
Surr: 4-Bromofluorobenzene	94.4		% 74	4-125	1	07/15/10 20:37	JC	5542288
Surr: Toluene-d8	91.3		% 82	2-118	1	07/15/10 20:37	JC	5542288

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

Quality Control Documentation

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Oil and Grease by Method 1664 WorkOrder: 10070363

Method: 1664A Lab Batch ID: R305270

Method Blank

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

Analysis Date: 07/26/2010 15:15 Analyst: EAG

10070363-01I GLV13

Preparation Date: 07/26/2010 11:10 Prep By: Method:

Analyte	Result	Rep Limit
Oil and Grease	ND	5.0

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: EX_100726B-5548836 Units: mg/L Analysis Date: 07/26/2010 15:15 Analyst: EAG

Preparation Date: 07/26/2010 11:10 Prep By: Method:

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
Oil and Grease	40.0	39.1	97.8	40.0	38.8	97.0	0.8	18	78	114

Matrix Spike (MS)

Sample Spiked: H1007041900

 RunID:
 EX_100726B-5548843
 Units:
 mg/L

 Analysis Date:
 07/26/2010 15:15
 Analyst:
 EAG

Preparation Date: 07/26/2010 11:10 Prep By: Method:

Analyte	Sample Result	Spike Added	MS Result	MS % Recovery	-	High Limit
Oil and Grease	14.6	40	46.6	80.0	78	114

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10070363

 Method:
 TX1005
 Lab Batch ID:
 101011

Method Blank

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

Analysis Date: 07/22/2010 2:27 Analyst: NW

10070363-01C GLV13

Preparation Date: 07/19/2010 12:15 Prep By: LSB Method: TX1005

Analyte	Result	Rep Limit
>C12-C28	ND	5.0
>C28-C35	ND	5.0
C6-C12	ND	5.0
Total TPH (C6-C35)	ND	5.0
Surr: 1-Chlorooctane	116.2	70-130
Surr: o-Terphenyl	97.7	70-130

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID: HP_B_100722C-5546405 Units: mg/L
Analysis Date: 07/22/2010 13:17 Analyst: NW

Preparation Date: 07/19/2010 12:15 Prep By: LSB Method: TX1005

Analyte	LCS Spike Added	LCS Result	LCS Percent Recovery	LCSD Spike Added	LCSD Result	LCSD Percent Recovery	RPD	RPD Limit	Lower Limit	Upper Limit
>C12-C28	100	99.3	99.3	100	109	109	9.0	20	75	125
C6-C12	100	98.4	98.4	100	107	107	8.1	20	75	125
Total TPH (C6-C35)	200.0	197.7	98.89	200.0	216.0	107.8	8.6	20	75	125
Surr: 1-Chlorooctane	5.00	5.04	101	5.00	5.48	110	8.3	30	70	130
Surr: o-Terphenyl	5.00	5.15	103	5.00	5.58	112	8.0	30	70	130

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070363-01

RunID: HP_B_100722C-5546384 Units: mg/L Analysis Date: 07/22/2010 3:10 Analyst: NW

Preparation Date: 07/19/2010 12:15 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
>C12-C28	ND	98.5	121	123	98.5	117	118	3.78	20	75	125
C6-C12	ND	98.5	109	111	98.5	104	106	4.66	20	75	125
Total TPH (C6-C35)	ND	197	230	117	197	221	112	4.19	20	75	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 TPH Texas 1005
 WorkOrder:
 10070363

 Method:
 TX1005
 Lab Batch ID:
 101011

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070363-01

RunID: HP_B_100722C-5546384 Units: mg/L Analysis Date: 07/22/2010 3:10 Analyst: NW

Preparation Date: 07/19/2010 12:15 Prep By: LSB Method: TX1005

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Surr: 1-Chlorooctane	ND	4.92	5.61	114	4.92	5.53	112	1.54	20	70	130
Surr: o-Terphenyl	ND	4.92	5.45	111	4.92	5.46	111	0.213	20	70	130

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Method Blank

Samples in Analytical Batch:

Lab Sample ID
10070363-01A
Client Sample ID
GLV13

Analyte	Result	Rep Limit
1,2,4,5-Tetrachlorobenzene	ND	10
1,2,4-Trichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,2-Diphenylhydrazine	ND	10
1,3,5-Trinitrobenzene	ND	10
1,3-Dichlorobenzene	ND.	5.0
1,3-Dinitrobenzene	ND.	10
1.4-Dichlorobenzene	ND.	5.0
1-Methylnaphthalene	ND.	5.0
2,3,4,6-Tetrachlorophenol	ND	10
2,4,5-Trichlorophenol	ND.	10
2,4,6-Trichlorophenol	ND	5.0
2,4-Dichlorophenol	ND.	5.0
2,4-Dimethylphenol	ND ND	5.0
2,4-Dinitrophenol	ND	25
2,4-Dinitrophenol	ND	5.0
	ND	5.0
2,6-Dichlorophenol		
2,6-Dimethylphenol	ND	5.0
2,6-Dinitrotoluene	ND	5.0
2-Acetylaminofluorene	ND	10
2-Chloronaphthalene	ND	5.0
2-Chlorophenol	ND	5.0
2-Methylnaphthalene	ND	5.0
2-Nitroaniline	ND	25
2-Nitrophenol	ND	5.0
3,3´-Dichlorobenzidine	ND	10
3-Nitroaniline	ND	25
4,6-Dinitro-2-methylphenol	ND	25
4-Chloro-3-methylphenol	ND	5.0
4-Chloroaniline	ND	5.0
4-Chlorophenyl phenyl ether	ND	5.0
4-Nitroaniline	ND	25
4-Nitrophenol	ND	25
4-Nitroquinoline-1-oxide	ND	10
Acenaphthene	ND	5.0
Acenaphthylene	ND	5.0
Acetophenone	ND	5.0
Aniline	ND	5.0
Anthracene	ND	5.0
Benz(a)anthracene	ND	5.0
Benzidine	ND	20
Benzo(a)pyrene	ND	5.0
Benzo(b)fluoranthene	ND	5.0
Benzo(g,h,i)perylene	ND	5.0
Benzo(k)fluoranthene	ND	5.0
Benzoic acid	ND	25

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference
D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

7/26/2010 4:48:49 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Method Blank

Analyte	Result	Rep Limit
Benzyl alcohol	ND	5.0
Biphenyl	ND	50
Bis(2-chloroethoxy)methane	ND	5.0
Bis(2-chloroethyl)ether	ND	5.0
Bis(2-chloroisopropyl)ether	ND	5.0
Bis(2-ethylhexyl)phthalate	ND	5.0
Butyl benzyl phthalate	ND	5.0
Chrysene	ND	5.0
Dibenz(a,h)acridine	ND	25
Dibenz(a,h)anthracene	ND	5.0
Dibenz(a,j)acridine	ND	5.0
Dibenzofuran	ND	5.0
Diethyl phthalate	ND	5.0
Dimethyl phthalate	ND	5.0
Di-n-butyl phthalate	ND	5.0
Di-n-octyl phthalate	ND	5.0
Dinoseb	ND	10
Diphenylamine	ND	10
Fluoranthene	ND	5.0
Fluorene	ND	5.0
Hexachlorobenzene	ND	5.0
Hexachlorobutadiene	ND	5.0
Hexachlorocyclopentadiene	ND	5.0
Hexachloroethane	ND	5.0
Hexachloropropene	ND	5.0
Indeno(1,2,3-cd)pyrene	ND	5.0
Isophorone	ND	5.0
Naphthalene	ND	5.0
Nitrobenzene	ND	5.0
N-Nitrosodiethylamine	ND	5.0
N-Nitrosodimethylamine	ND	5.0
N-Nitroso-di-n-butylamine	ND	5.0
N-Nitrosodi-n-propylamine	ND	5.0
N-Nitrosodiphenylamine	ND	5.0
N-Nitrosomethylethylamine	ND	5.0
N-Nitrosomorpholine	ND	25
N-Nitrosopiperidine	ND	5.0
N-Nitrosopyrrolidine	ND	5.0
Pentachlorobenzene	ND	5.0
Pentachloroethane	ND	10
Pentachlorophenol	ND	25
Phenanthrene	ND	5.0
Phenol	ND	5.0
Pyrene	ND	5.0
Pyridine	ND	5.0
Quinoline	ND	50

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Method Blank

Analyte	Result	Rep Limit
2-Methylphenol	ND	5.0
3 & 4-Methylphenol	ND	5.0
Cresols, Total	ND	5.0
Surr: 2,4,6-Tribromophenol	78.9	25-154
Surr: 2-Fluorobiphenyl	75.4	45-108
Surr: 2-Fluorophenol	65.1	18-113
Surr: Nitrobenzene-d5	81.7	41-113
Surr: Phenol-d5	50.9	10-113
Surr: Terphenyl-d14	87.8	43-122

Laboratory Control Sample (LCS)

RunID: P_100715C-5541420 Units: ug/L Analysis Date: 07/15/2010 17:28 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2,4,5-Tetrachlorobenzene	25.0	20.9	83.7	53	110
1,2,4-Trichlorobenzene	25.0	20.6	82.6	52	109
1,2-Dichlorobenzene	25.0	20.9	83.7	50	109
1,2-Diphenylhydrazine	25.0	22.7	90.7	40	142
1,3,5-Trinitrobenzene	25.0	12.9	51.5	16	115
1,3-Dichlorobenzene	25.0	20.4	81.7	49	106
1,3-Dinitrobenzene	25.0	22.4	89.6	46	124
1,4-Dichlorobenzene	25.0	20.9	83.7	48	106
1-Methylnaphthalene	25.0	21.0	84.1	52	109
2,3,4,6-Tetrachlorophenol	25.0	20.8	83.3	45	118
2,4,5-Trichlorophenol	25.0	20.8	83.2	48	120
2,4,6-Trichlorophenol	25.0	21.9	87.6	38	150
2,4-Dichlorophenol	25.0	21.2	84.9	50	110
2,4-Dimethylphenol	25.0	21.5	86.2	50	120
2,4-Dinitrophenol	25.0	14.6	58.4	10	122
2,4-Dinitrotoluene	25.0	23.1	92.3	50	129
2,6-Dichlorophenol	25.0	21.8	87.1	52	114
2,6-Dimethylphenol	25.0	22.8	91.3	54	113

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Laboratory Control Sample (LCS)

RunID: P_100715C-5541420 Units: ug/L Analysis Date: 07/15/2010 17:28 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
2,6-Dinitrotoluene	25.0	22.7	90.7	48	127
2-Acetylaminofluorene	25.0	22.1	88.2	45	131
2-Chloronaphthalene	25.0	21.5	85.9	52	118
2-Chlorophenol	25.0	21.3	85.1	50	115
2-Methylnaphthalene	25.0	21.9	87.5	52	116
2-Nitroaniline	25.0	24.4	97.6	43	127
2-Nitrophenol	25.0	20.7	82.7	48	114
3,3´-Dichlorobenzidine	25.0	16.8	67.0	30	104
3-Nitroaniline	25.0	17.3	69.2	31	114
4,6-Dinitro-2-methylphenol	25.0	19.7	78.7	23	127
4-Chloro-3-methylphenol	25.0	27.6	110	49	120
4-Chloroaniline	25.0	21.6	86.5	54	116
4-Chlorophenyl phenyl ether	25.0	22.1	88.6	54	116
4-Nitroaniline	25.0	21.2	84.9	41	118
4-Nitrophenol	25.0	16.2	64.7	21	130
4-Nitroquinoline-1-oxide	25.0	13.5	53.9	10	128
Acenaphthene	25.0	21.6	86.5	52	117
Acenaphthylene	25.0	22.9	91.5	53	122
Acetophenone	25.0	21.1	84.3	49	114
Aniline	50.0	37.1	74.1	47	106
Anthracene	25.0	22.1	88.3	49	126
Benz(a)anthracene	25.0	22.4	89.7	53	121
Benzidine	250	138	55.1	10	133
Benzo(a)pyrene	25.0	18.8	75.2	47	100
Benzo(b)fluoranthene	25.0	21.9	87.5	52	113
Benzo(g,h,i)perylene	25.0	22.3	89.3	52	121
Benzo(k)fluoranthene	25.0	21.8	87.2	54	117
Benzoic acid	25.0	11.0	43.9	10	133
Benzyl alcohol	25.0	20.5	82.1	40	127
Biphenyl	25.0	21.4	85.7	52	116
Bis(2-chloroethoxy)methane	25.0	21.3	85.2	47	113
Bis(2-chloroethyl)ether	25.0	21.8	87.4	48	112
Bis(2-chloroisopropyl)ether	25.0	22.8	91.4	50	150
Bis(2-ethylhexyl)phthalate	25.0	23.3	93.4	42	139

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Laboratory Control Sample (LCS)

RunID: P_100715C-5541420 Units: ug/L Analysis Date: 07/15/2010 17:28 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Butyl benzyl phthalate	25.0	22.7	90.7	40	139
Chrysene	25.0	21.9	87.4	53	117
Dibenz(a,h)acridine	25.0	24.0	96.0	49	117
Dibenz(a,h)anthracene	25.0	22.9	91.6	49	120
Dibenz(a,j)acridine	25.0	20.9	83.4	46	125
Dibenzofuran	25.0	22.4	89.6	55	119
Diethyl phthalate	25.0	22.4	89.7	45	129
Dimethyl phthalate	25.0	22.3	89.3	52	122
Di-n-butyl phthalate	25.0	23.2	92.6	42	141
Di-n-octyl phthalate	25.0	24.9	99.7	40	135
Dinoseb	25.0	21.0	84.1	17	148
Diphenylamine	50.0	47.3	94.6	62	136
Fluoranthene	25.0	22.8	91.2	49	132
Fluorene	25.0	22.5	90.0	54	119
Hexachlorobenzene	25.0	21.6	86.5	53	117
Hexachlorobutadiene	25.0	20.3	81.2	49	106
Hexachlorocyclopentadiene	25.0	15.2	60.9	17	105
Hexachloroethane	25.0	20.0	79.8	42	110
Hexachloropropene	25.0	21.4	85.6	46	113
Indeno(1,2,3-cd)pyrene	25.0	23.5	94.0	50	129
Isophorone	25.0	26.1	105	52	134
Naphthalene	25.0	21.0	84.2	53	111
Nitrobenzene	25.0	21.8	87.4	47	116
N-Nitrosodiethylamine	25.0	21.6	86.3	47	109
N-Nitrosodimethylamine	25.0	22.4	89.4	32	121
N-Nitroso-di-n-butylamine	25.0	22.2	88.8	45	121
N-Nitrosodi-n-propylamine	25.0	22.3	89.4	47	118
N-Nitrosodiphenylamine	50.0	47.3	94.6	62	136
N-Nitrosomethylethylamine	25.0	21.2	84.8	10	135
N-Nitrosomorpholine	25.0	26.6	106	10	162
N-Nitrosopiperidine	25.0	22.4	89.5	50	112
N-Nitrosopyrrolidine	25.0	23.2	92.7	43	122
Pentachlorobenzene	25.0	21.7	86.7	55	113
Pentachloroethane	25.0	20.2	80.8	46	110

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Laboratory Control Sample (LCS)

RunID: P_100715C-5541420 Units: ug/L Analysis Date: 07/15/2010 17:28 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Pentachlorophenol	25.0	19.2	76.9	44	102
Phenanthrene	25.0	23.3	93.4	49	124
Phenol	25.0	22.2	88.7	37	128
Pyrene	25.0	22.5	90.1	52	122
Pyridine	50.0	37.2	74.4	37	99
Quinoline	25.0	22.0	87.8	56	113
2-Methylphenol	25.0	21.9	87.5	49	118
3 & 4-Methylphenol	25.0	21.9	87.4	44	132
Cresols, Total	50.0	43.8	87.5	44	132
Surr: 2,4,6-Tribromophenol	75.0	69.9	93.2	25	154
Surr: 2-Fluorobiphenyl	50.0	42.4	84.7	45	108
Surr: 2-Fluorophenol	75.0	62.8	83.8	18	113
Surr: Nitrobenzene-d5	50.0	43.2	86.4	41	113
Surr: Phenol-d5	75.0	66.6	88.8	10	113
Surr: Terphenyl-d14	50.0	42.4	84.9	43	122

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070388-02

RunID: P_100715C-5541424 Units: ug/L Analysis Date: 07/15/2010 19:37 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,2,4,5-Tetrachlorobenzene	ND	25	D	D	25	D	D	D	30	30	160
1,2,4-Trichlorobenzene	ND	25	D	D	25	D	D	D	30	10	142
1,2-Dichlorobenzene	ND	25	D	D	25	D	D	D	30	20	150
1,2-Diphenylhydrazine	ND	25	D	D	25	D	D	D	30	10	251
1,3,5-Trinitrobenzene	ND	25	D	D	25	D	D	D	30	10	225
1,3-Dichlorobenzene	ND	25	D	D	25	D	D	D	30	20	150
1,3-Dinitrobenzene	ND	25	D	D	25	D	D	D	30	30	170

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070388-02

RunID: P_100715C-5541424 Units: ug/L Analysis Date: 07/15/2010 19:37 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,4-Dichlorobenzene	ND	25	D	D	25	D	D	D	30	20	150
1-Methylnaphthalene	ND	25	2550	10200 *	25	2370	9460 *	7.44	30	30	120
2,3,4,6-Tetrachlorophenol	ND	25	D	D	25	D	D	D	30	30	170
2,4,5-Trichlorophenol	ND	25	D	D	25	D	D	D	30	30	150
2,4,6-Trichlorophenol	ND	25	D	D	25	D	D	D	30	30	150
2,4-Dichlorophenol	ND	25	D	D	25	D	D	D	30	30	150
2,4-Dimethylphenol	ND	25	D	D	25	D	D	D	30	32	140
2,4-Dinitrophenol	ND	25	D	D	25	D	D	D	30	10	160
2,4-Dinitrotoluene	ND	25	D	D	25	D	D	D	30	30	150
2,6-Dichlorophenol	ND	25	D	D	25	D	D	D	30	30	150
2,6-Dimethylphenol	ND	25	D	D	25	D	D	D	30	43	128
2,6-Dinitrotoluene	ND	25	D	D	25	D	D	D	30	30	150
2-Acetylaminofluorene	ND	25	D	D	25	D	D	D	30	30	150
2-Chloronaphthalene	ND	25	D	D	25	D	D	D	30	30	150
2-Chlorophenol	ND	25	D	D	25	D	D	D	30	23	134
2-Methylnaphthalene	5590	25	5850	N/C	25	5620	N/C	N/C	30	20	170
2-Nitroaniline	ND	25	D	D	25	D	D	D	30	20	160
2-Nitrophenol	ND	25	D	D	25	D	D	D	30	29	182
3,3'-Dichlorobenzidine	ND	25	D	D	25	D	D	D	30	30	200
3-Nitroaniline	ND	25	D	D	25	D	D	D	30	20	160
4,6-Dinitro-2-methylphenol	ND	25	D	D	25	D	D	D	30	10	160
4-Chloro-3-methylphenol	ND	25	D	D	25	D	D	D	30	25	160
4-Chloroaniline	ND	25	D	D	25	D	D	D	30	20	160
4-Chlorophenyl phenyl ether	ND	25	D	D	25	D	D	D	30	25	158
4-Nitroaniline	ND	25	D	D	25	D	D	D	30	20	160
4-Nitrophenol	ND	25	D	D	25	D	D	D	30	10	132
4-Nitroquinoline-1-oxide	ND	25	D	D	25	D	D	D	30	10	160
Acenaphthene	ND	25	D	D	25	D	D	D	30	30	150
Acenaphthylene	ND	25	D	D	25	D	D	D	30	33	250
Acetophenone	ND	25	D	D	25	D	D	D	30	30	170
Aniline	ND	50	D	D	50	D	D	D	30	10	135
Anthracene	ND	25	D	D	25	D	D	D	30	27	133

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070388-02

RunID: P_100715C-5541424 Units: ug/L Analysis Date: 07/15/2010 19:37 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Benz(a)anthracene	ND	25	D	D	25	D	D	D	30	33	143
Benzidine	ND	250	D	D	250	D	D	D	30	10	160
Benzo(a)pyrene	ND	25	D	D	25	D	D	D	30	17	163
Benzo(b)fluoranthene	ND	25	D	D	25	D	D	D	30	24	159
Benzo(g,h,i)perylene	ND	25	D	D	25	D	D	D	30	30	160
Benzo(k)fluoranthene	ND	25	D	D	25	D	D	D	30	11	162
Benzoic acid	677	25	593	N/C	25	694	N/C	N/C	30	10	400
Benzyl alcohol	ND	25	D	D	25	D	D	D	30	30	160
Biphenyl	ND	25	D	D	25	D	D	D	30	20	150
Bis(2-chloroethoxy)methane	ND	25	D	D	25	D	D	D	30	33	184
Bis(2-chloroethyl)ether	ND	25	D	D	25	D	D	D	30	12	158
Bis(2-chloroisopropyl)ether	ND	25	D	D	25	D	D	D	30	20	160
Bis(2-ethylhexyl)phthalate	ND	25	56.7	94.3	25	54.7	86.1	3.68	30	10	158
Butyl benzyl phthalate	ND	25	D	D	25	D	D	D	30	30	160
Chrysene	ND	25	32.7	131	25	34.8	139	6.23	30	17	168
Dibenz(a,h)acridine	ND	25	D	D	25	D	D	D	30	30	160
Dibenz(a,h)anthracene	ND	25	D	D	25	D	D	D	30	30	160
Dibenz(a,j)acridine	ND	25	D	D	25	D	D	D	30	30	160
Dibenzofuran	ND	25	80.3	104	25	79.1	99.5	1.45	30	30	150
Diethyl phthalate	ND	25	D	D	25	D	D	D	30	30	160
Dimethyl phthalate	ND	25	D	D	25	D	D	D	30	30	160
Di-n-butyl phthalate	ND	25	D	D	25	D	D	D	30	30	160
Di-n-octyl phthalate	ND	25	D	D	25	D	D	D	30	20	150
Dinoseb	ND	25	D	D	25	D	D	D	30	35	140
Diphenylamine	ND	50	D	D	50	D	D	D	30	30	150
Fluoranthene	ND	25	D	D	25	D	D	D	30	26	137
Fluorene	430	25	515	N/C	25	453	N/C	N/C	30	30	150
Hexachlorobenzene	ND	25	D	D	25	D	D	D	30	20	150
Hexachlorobutadiene	ND	25	D	D	25	D	D	D	30	20	140
Hexachlorocyclopentadiene	ND	25	D	D	25	D	D	D	30	10	150
Hexachloroethane	ND	25	D	D	25	D	D	D	30	10	140
Hexachloropropene	ND	25	D	D	25	D	D	D	30	10	150

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Semivolatile Organics by Method 8270C WorkOrder: 10070363

Method: SW8270C Lab Batch ID: 100957

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070388-02

RunID: P_100715C-5541424 Units: ug/L Analysis Date: 07/15/2010 19:37 Analyst: GY

Preparation Date: 07/15/2010 14:49 Prep By: N_M Method: SW3510C

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Indeno(1,2,3-cd)pyrene	ND	25	D	D	25	D	D	D	30	30	160
Isophorone	ND	25	D	D	25	D	D	D	30	21	196
Naphthalene	2130	25	2110	N/C	25	2210	N/C	N/C	30	21	133
Nitrobenzene	ND	25	D	D	25	D	D	D	30	20	160
N-Nitrosodiethylamine	ND	25	D	D	25	D	D	D	30	30	150
N-Nitrosodimethylamine	ND	25	D	D	25	D	D	D	30	30	150
N-Nitroso-di-n-butylamine	ND	25	D	D	25	D	D	D	30	30	170
N-Nitrosodi-n-propylamine	ND	25	D	D	25	D	D	D	30	30	160
N-Nitrosodiphenylamine	ND	50	D	D	50	D	D	D	30	30	150
N-Nitrosomethylethylamine	ND	25	D	D	25	D	D	D	30	30	170
N-Nitrosomorpholine	ND	25	D	D	25	D	D	D	30	30	170
N-Nitrosopiperidine	ND	25	D	D	25	D	D	D	30	30	170
N-Nitrosopyrrolidine	ND	25	D	D	25	D	D	D	30	30	170
Pentachlorobenzene	ND	25	D	D	25	D	D	D	30	30	160
Pentachloroethane	ND	25	D	D	25	D	D	D	30	10	150
Pentachlorophenol	ND	25	D	D	25	D	D	D	30	14	176
Phenanthrene	301	25	355	N/C	25	324	N/C	N/C	30	10	140
Phenol	689	25	311	N/C	25	661	N/C	N/C	30	40	132
Pyrene	ND	25	33.3	133	25	34.9	140	4.87	30	30	150
Pyridine	ND	50	D	D	50	D	D	D	30	10	150
Quinoline	ND	25	D	D	25	D	D	D	30	30	150
2-Methylphenol	ND	25	D	D	25	D	D	D	30	30	160
3 & 4-Methylphenol	ND	25	D	D	25	D	D	D	30	10	160
Cresols, Total	ND	50	D	D	50	D	D	D	30	10	160
Surr: 2,4,6-Tribromophenol	ND	75	D	D	75	D	D	D	30	25	154
Surr: 2-Fluorobiphenyl	ND	50	D	D	50	D	D	D	30	45	108
Surr: 2-Fluorophenol	ND	75	D	D	75	D	D	D	30	18	113
Surr: Nitrobenzene-d5	ND	50	D	D	50	D	D	D	30	41	113
Surr: Phenol-d5	ND	75	D	D	75	D	D	D	30	10	113
Surr: Terphenyl-d14	ND	50	D	D	50	D	D	D	30	43	122

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363 Method: SW8260B Lab Batch ID: R304865

Method Blank

Samples in Analytical Batch:

Q_100715C-5542284 RunID: Units: ug/L Analysis Date: 07/15/2010 13:59 Analyst: JC

Lab Sample ID **Client Sample ID** 10070363-01B GLV13

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND ND	1.0
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	ND	
		1.0
	ND	1.0
1,1,2-Trichloroethane	ND	1.0
1,1-Dichloroethane	ND	1.0
1.1-Dichloroethene	ND	1.0
1.1-Dichloropropene	ND	1.0
1,2,3-Trichlorobenzene	ND	1.0
1,2,3-Trichloropropane	ND	1.0
1.2.4-Trichlorobenzene	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,2-Dibromo-3-chloropropane	ND	5.0
1,2-Dibromoethane	ND	1.0
1,2-Dichlorobenzene	ND	1.0
1,2-Dichloroethane	ND	1.0
1,2-Dichloropropane	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,3-Butadiene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,3-Dichloropropane	ND	1.0
1,4-Dichlorobenzene	ND ND	1.0
1,4-Dioxane	ND	50
2,2,4-Trimethylpentane	ND	1.0
2,2-Dichloropropane	ND	1.0
2-Butanone	ND ND	1.0
2-Chloroethyl vinyl ether	ND ND	5.0
2-Chlorotoluene	ND	1.0
2-Hexanone	ND	1.0
2-Nitropropane	ND	5.0
4-Chlorotoluene	ND	1.0
4-Isopropyltoluene	ND ND	1.0
	ND ND	1.0
4-Methyl-2-pentanone Acetone	ND ND	12
Acetonitrile	ND ND	25
Acrylonitrile	ND ND	5.0
-	ND ND	
Allyl chloride	ND ND	1.0 1.0
alpha-Methylstyrene		
Benzene	ND	1.0
Benzyl chloride	ND	5.0
Bromobenzene	ND	1.0
Bromochloromethane	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	1.0
Butyl Acetate	ND	1.0
Carbon disulfide	ND	5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Method Blank

Analyte	Result	Rep Limit
Carbon tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	1.0
Chloroprene	ND	1.0
Crotonaldehyde	ND	25
Cyclohexane	ND	1.0
Cyclohexanone	ND	25
Dibromochloromethane	ND	1.0
Dibromomethane	ND	1.0
Dichlorodifluoromethane	ND	1.0
Dicyclopentadiene	ND	1.0
Diisopropyl Ether	ND	1.0
Epichlorohydrin	ND	25
Ethyl Acetate	ND	5.0
Ethyl Cyanide	ND	5.0
Ethyl Ether	ND	1.0
Ethyl methacrylate	ND	1.0
Ethylbenzene	ND	1.0
Ethylene oxide	ND	25
Freon-113	ND	5.0
Hexachlorobutadiene	ND	1.0
Hexane	ND	1.0
Iodomethane	ND	1.0
Isobutyl alcohol	ND	50
Isopropylbenzene	ND	1.0
Methacrylonitrile	ND	1.0
Methyl acetate	ND	5.0
Methyl methacrylate	ND	1.0
Methyl tert-butyl ether	ND	1.0
Methylcyclohexane	ND	1.0
Methylene chloride	ND	1.0
Naphthalene	ND	1.0
n-Butylbenzene	ND	1.0
n-Propylbenzene	ND	1.0
p-Diethylbenzene	ND	1.0
sec-Butylbenzene	ND	1.0
Styrene	ND	1.0
t-Butyl alcohol	ND	25
tert-Amyl methyl ether	ND	1.0
tert-Butyl ethyl ether	ND	1.0
tert-Butylbenzene	ND	1.0
Tetrachloroethene	ND	1.0
Tetrahydrofuran	ND	1.0
Toluene	ND	1.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
* - Recovery Outside Advisable QC Limits

receivery outclass revisable de Elithic

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Method Blank

Analyte	Result	Rep Limit
trans-1,4-Dichloro-2-Butene	ND	25
Trichloroethene	ND	1.0
Trichlorofluoromethane	ND	1.0
Vinyl acetate	ND	1.0
Vinyl chloride	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
m,p-Xylene	ND	2.0
o-Xylene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
1,2-Dichloroethene (total)	ND	1.0
1,3-Dichloropropene, Total	ND	1.0
Xylenes,Total	ND	1.0
Surr: 1,2-Dichloroethane-d4	106.1	70-130
Surr: 4-Bromofluorobenzene	96.8	74-125
Surr: Toluene-d8	98.7	82-118

Laboratory Control Sample (LCS)

RunID: Q_100715C-5542283 Units: ug/L Analysis Date: 07/15/2010 13:31 Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,1,1,2-Tetrachloroethane	20.0	22.7	114	71	128
1,1,1-Trichloroethane	20.0	20.0	100	61	135
1,1,2,2-Tetrachloroethane	20.0	19.5	97.5	60	133
1,1,2-Trichloroethane	20.0	21.3	107	77	127
1,1-Dichloroethane	20.0	18.1	90.5	68	132
1,1-Dichloroethene	20.0	19.2	96.0	65	134
1,1-Dichloropropene	20.0	19.2	96.1	68	126
1,2,3-Trichlorobenzene	20.0	22.6	113	36	154
1,2,3-Trichloropropane	20.0	19.8	99.1	38	153
1,2,4-Trichlorobenzene	20.0	22.2	111	69	144
1,2,4-Trimethylbenzene	20.0	18.6	93.2	64	128
1,2-Dibromo-3-chloropropane	20.0	19.1	95.4	44	141

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Laboratory Control Sample (LCS)

RunID: Q_100715C-5542283 Units: ug/L Analysis Date: 07/15/2010 13:31 Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
1,2-Dibromoethane	20.0	20.9	105	75	124
1,2-Dichlorobenzene	20.0	20.0	100	68	124
1,2-Dichloroethane	20.0	19.0	94.9	61	138
1,2-Dichloropropane	20.0	18.4	91.9	76	123
1,3,5-Trimethylbenzene	20.0	18.9	94.3	61	127
1,3-Butadiene	20.0	8.99	45.0	10	192
1,3-Dichlorobenzene	20.0	20.3	101	68	127
1,3-Dichloropropane	20.0	19.8	99.0	76	125
1,4-Dichlorobenzene	20.0	20.4	102	68	124
1,4-Dioxane	800	822	103	24	172
2,2,4-Trimethylpentane	20.0	21.8	109	42	167
2,2-Dichloropropane	20.0	18.4	92.2	42	142
2-Butanone	20.0	14.7	73.5	22	183
2-Chloroethyl vinyl ether	20.0	20.4	102	10	179
2-Chlorotoluene	20.0	19.1	95.6	64	132
2-Hexanone	20.0	19.0	95.1	31	178
2-Nitropropane	20.0	18.8	93.9	10	176
4-Chlorotoluene	20.0	19.8	99.0	61	132
4-Isopropyltoluene	20.0	20.1	100	63	136
4-Methyl-2-pentanone	20.0	17.2	85.9	10	159
Acetone	20.0	11.1	55.4	10	200
Acetonitrile	200	90.1	45.1	29	169
Acrylonitrile	20.0	15.6	78.1	54	155
Allyl chloride	20.0	18.0	90.1	54	151
alpha-Methylstyrene	20.0	18.5	92.6	10	151
Benzene	20.0	22.0	110	74	123
Benzyl chloride	100	89.6	89.6	20	137
Bromobenzene	20.0	20.1	100	68	125
Bromochloromethane	20.0	20.0	99.8	71	124
Bromodichloromethane	20.0	22.2	111	72	128
Bromoform	20.0	23.2	116	60	128
Bromomethane	20.0	17.5	87.7	53	130
Butyl Acetate	20.0	15.6	77.8	60	140
Carbon disulfide	20.0	16.0	80.2	41	143

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Laboratory Control Sample (LCS)

 RunID:
 Q_100715C-5542283
 Units: ug/L

 Analysis Date:
 07/15/2010 13:31
 Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Carbon tetrachloride	20.0	25.5	127	59	142
Chlorobenzene	20.0	21.0	105	75	125
Chloroethane	20.0	15.7	78.4	60	134
Chloroform	20.0	19.6	98.1	71	127
Chloromethane	20.0	14.8	74.2	50	139
Chloroprene	20.0	18.4	92.1	60	140
Crotonaldehyde	100	80.8	80.8	11	183
Cyclohexane	20.0	23.8	119	62	138
Cyclohexanone	100	50.1	50.1	10	200
Dibromochloromethane	20.0	21.8	109	65	130
Dibromomethane	20.0	22.3	111	79	124
Dichlorodifluoromethane	20.0	17.3	86.5	22	162
Dicyclopentadiene	20.0	17.0	84.9	56	130
Diisopropyl Ether	20.0	16.3	81.6	61	142
Epichlorohydrin	200	158	79.1	10	125
Ethyl Acetate	200	171	85.4	36	140
Ethyl Cyanide	20.0	15.1	75.4	38	177
Ethyl Ether	20.0	15.2	76.0	59	134
Ethyl methacrylate	20.0	18.4	92.1	63	129
Ethylbenzene	20.0	20.8	104	72	127
Ethylene oxide	20.0	6.86	34.3	10	200
Freon-113	20.0	22.1	110	53	150
Hexachlorobutadiene	20.0	26.2	131	45	152
Hexane	20.0	20.0	100	43	162
Iodomethane	20.0	19.3	96.6	58	132
Isobutyl alcohol	200	182	91.2	10	193
Isopropylbenzene	20.0	24.2	121	58	130
Methacrylonitrile	20.0	17.5	87.6	58	141
Methyl acetate	200	163	81.5	29	161
Methyl methacrylate	20.0	19.4	96.9	51	139
Methyl tert-butyl ether	40.0	34.1	85.2	63	123
Methylcyclohexane	20.0	21.0	105	56	144
Methylene chloride	20.0	18.4	92.1	61	135
Naphthalene	20.0	18.5	92.7	33	148

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Laboratory Control Sample (LCS)

 RunID:
 Q_100715C-5542283
 Units: ug/L

 Analysis Date:
 07/15/2010 13:31
 Analyst: JC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
n-Butylbenzene	20.0	20.4	102	62	136
n-Propylbenzene	20.0	18.2	90.9	57	131
p-Diethylbenzene	20.0	22.1	110	53	155
sec-Butylbenzene	20.0	19.9	99.7	63	131
Styrene	20.0	20.8	104	69	120
t-Butyl alcohol	200	131	65.7	14	165
tert-Amyl methyl ether	20.0	17.4	87.0	62	127
tert-Butyl ethyl ether	20.0	16.4	82.0	61	126
tert-Butylbenzene	20.0	19.8	99.2	59	131
Tetrachloroethene	20.0	26.2	131	45	173
Tetrahydrofuran	20.0	14.5	72.3	35	164
Toluene	20.0	19.9	99.7	74	126
trans-1,4-Dichloro-2-Butene	20.0	27.4	137	10	302
Trichloroethene	20.0	22.3	111	79	131
Trichlorofluoromethane	20.0	20.5	102	49	153
Vinyl acetate	20.0	16.4	82.1	10	167
Vinyl chloride	20.0	15.2	76.1	51	148
cis-1,2-Dichloroethene	20.0	20.5	103	71	128
cis-1,3-Dichloropropene	20.0	19.6	98.1	67	128
m,p-Xylene	40.0	41.8	104	71	129
o-Xylene	20.0	21.0	105	74	130
trans-1,2-Dichloroethene	20.0	17.2	86.1	66	128
trans-1,3-Dichloropropene	20.0	19.5	97.4	60	128
1,2-Dichloroethene (total)	40.0	37.7	94.3	66	128
1,3-Dichloropropene, Total	40.0	39.1	97.8	60	128
Xylenes,Total	60.0	62.8	105	71	130
Surr: 1,2-Dichloroethane-d4	50.0	51.6	103	70	130
Surr: 4-Bromofluorobenzene	50.0	48.6	97.2	74	125
Surr: Toluene-d8	50.0	46.5	93.0	82	118

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Sample Spiked: 10070368-11

RunID: Q_100715C-5542286 Units: ug/L Analysis Date: 07/15/2010 15:29 Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
1,1,1,2-Tetrachloroethane	ND	20	22.2	111	20	21.8	109	1.61	20	68	124
1,1,1-Trichloroethane	ND	20	20.1	101	20	19.6	97.9	2.64	20	69	123
1,1,2,2-Tetrachloroethane	ND	20	20.1	100	20	19.9	99.6	0.850	20	69	130
1,1,2-Trichloroethane	ND	20	21.5	108	20	22.4	112	4.26	20	75	126
1,1-Dichloroethane	ND	20	18.7	93.3	20	18.1	90.6	2.94	20	65	129
1,1-Dichloroethene	ND	20	19.1	95.6	20	19.0	95.1	0.550	22	61	139
1,1-Dichloropropene	ND	20	19.7	98.5	20	19.0	95.1	3.53	20	69	121
1,2,3-Trichlorobenzene	ND	20	21.3	107	20	22.6	113	5.63	20	53	127
1,2,3-Trichloropropane	ND	20	19.6	98.1	20	20.0	100	1.96	20	79	124
1,2,4-Trichlorobenzene	ND	20	21.1	105	20	21.2	106	0.440	20	58	118
1,2,4-Trimethylbenzene	ND	20	18.4	92.1	20	18.5	92.3	0.206	20	43	132
1,2-Dibromo-3-chloropropane	ND	20	19.0	95.1	20	18.6	93.0	2.19	20	46	131
1,2-Dibromoethane	ND	20	21.5	107	20	21.3	106	0.959	20	76	122
1,2-Dichlorobenzene	ND	20	20.1	101	20	20.0	100	0.344	20	74	110
1,2-Dichloroethane	ND	20	19.4	96.8	20	19.4	97.2	0.345	20	60	129
1,2-Dichloropropane	ND	20	18.9	94.5	20	18.9	94.5	0.0318	20	76	116
1,3,5-Trimethylbenzene	ND	20	18.6	93.1	20	18.7	93.7	0.648	20	51	121
1,3-Butadiene	ND	20	9.40	47.0	20	9.81	49.0	4.24	20	10	181
1,3-Dichlorobenzene	ND	20	20.0	99.8	20	20.4	102	1.99	20	71	110
1,3-Dichloropropane	ND	20	20.6	103	20	21.1	106	2.28	20	80	119
1,4-Dichlorobenzene	ND	20	20.1	100	20	20.5	102	1.98	20	69	110
1,4-Dioxane	ND	800	767	95.9	800	773	96.6	0.736	20	10	196
2,2,4-Trimethylpentane	ND	20	21.6	108	20	21.4	107	0.932	20	48	133
2,2-Dichloropropane	ND	20	20.3	101	20	18.3	91.6	10.1	20	52	122
2-Butanone	ND	20	10.4	52.2	20	11.8	58.9	12.1	20	10	133
2-Chloroethyl vinyl ether	ND	20	0	0 *	20	0	0 *	0	20	10	182
2-Chlorotoluene	ND	20	19.6	98.1	20	19.7	98.3	0.270	20	69	112
2-Hexanone	ND	20	14.1	70.4	20	15.0	75.1	6.41	20	10	163
2-Nitropropane	ND	20	19.5	97.6	20	19.5	97.5	0.133	20	10	187
4-Chlorotoluene	ND	20	18.7	93.7	20	18.8	94.2	0.500	20	37	110
4-Isopropyltoluene	ND	20	19.8	99.2	20	19.7	98.5	0.693	20	65	116
4-Methyl-2-pentanone	ND	20	16.2	81.2	20	17.0	85.2	4.77	20	10	159
Acetone	ND	20	9.75	48.7	20	10.3	51.3	5.14	20	10	160

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070368-11

RunID: Q_100715C-5542286 Units: ug/L Analysis Date: 07/15/2010 15:29 Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Acetonitrile	ND	200	88.4	44.2	200	86.7	43.3	2.02	20	10	200
Acrylonitrile	ND	20	15.9	79.4	20	15.2	75.9	4.44	20	45	155
Allyl chloride	ND	20	17.7	88.4	20	17.3	86.7	2.02	20	37	157
alpha-Methylstyrene	ND	20	0	0 *	20	0	0 *	0	20	10	142
Benzene	ND	20	22.8	114	20	22.4	112	1.72	22	70	124
Benzyl chloride	ND	100	89.8	89.8	100	91.3	91.3	1.72	20	10	200
Bromobenzene	ND	20	19.8	98.9	20	19.7	98.6	0.319	20	72	111
Bromochloromethane	ND	20	19.7	98.6	20	19.7	98.3	0.274	20	73	126
Bromodichloromethane	ND	20	21.9	109	20	22.1	111	1.05	20	68	125
Bromoform	ND	20	23.2	116	20	21.8	109	6.06	20	44	132
Bromomethane	ND	20	17.4	87.0	20	17.2	86.0	1.09	20	50	140
Butyl Acetate	ND	20	16.4	81.9	20	15.7	78.7	3.98	30	60	140
Carbon disulfide	ND	20	15.9	79.7	20	15.8	79.0	0.977	20	46	143
Carbon tetrachloride	ND	20	26.8	134 *	20	26.2	131 *	2.40	20	66	126
Chlorobenzene	ND	20	20.5	103	20	21.0	105	2.07	21	68	123
Chloroethane	ND	20	15.4	77.1	20	14.8	74.2	3.86	20	59	134
Chloroform	ND	20	19.8	99.2	20	19.7	98.4	0.901	20	68	127
Chloromethane	ND	20	13.3	66.4	20	14.3	71.7	7.65	20	51	137
Chloroprene	ND	20	18.3	91.5	20	17.3	86.7	5.37	30	60	140
Crotonaldehyde	ND	100	29.4	29.4	100	20.0	20.0	38.2 *	20	10	200
Cyclohexane	ND	20	24.3	121	20	24.3	121	0.0866	20	61	132
Cyclohexanone	ND	100	15.9	15.9	100	17.1	17.1	6.86	20	10	109
Dibromochloromethane	ND	20	21.8	109	20	22.0	110	0.845	20	58	131
Dibromomethane	ND	20	22.8	114	20	22.4	112	1.66	20	82	123
Dichlorodifluoromethane	ND	20	17.1	85.4	20	18.0	89.8	4.92	20	35	143
Dicyclopentadiene	ND	20	0	0 *	20	0	0 *	0	20	14	141
Diisopropyl Ether	ND	20	16.6	83.2	20	16.2	80.8	2.91	20	53	135
Epichlorohydrin	ND	200	138	69.1	200	125	62.7	9.75	20	10	200
Ethyl Acetate	ND	200	163	81.3	200	166	82.8	1.83	20	10	200
Ethyl Cyanide	ND	20	15.7	78.4	20	16.2	80.8	2.98	20	10	151
Ethyl Ether	ND	20	15.6	78.1	20	15.4	76.9	1.56	20	60	135
Ethyl methacrylate	ND	20	18.3	91.7	20	18.5	92.4	0.755	20	66	125

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

Analysis:

Method:

HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13 ABC 13 Gulf Water Analysis

Volatile Organics by Method 8260B WorkOrder: 10070363
SW8260B Lab Batch ID: R304865

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070368-11

RunID: Q_100715C-5542286 Units: ug/L Analysis Date: 07/15/2010 15:29 Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Ethylbenzene	ND	20	21.2	106	20	22.0	110	3.69	20	76	122
Ethylene oxide	ND	20	0	0 *	20	0	0 *	0	20	25	150
Freon-113	ND	20	21.2	106	20	21.0	105	0.873	20	50	155
Hexachlorobutadiene	ND	20	24.3	121	20	24.4	122	0.518	20	43	137
Hexane	ND	20	20.1	101	20	21.0	105	4.20	20	46	137
Iodomethane	ND	20	19.0	95.0	20	19.8	99.1	4.25	20	57	145
Isobutyl alcohol	ND	200	159	79.7	200	172	86.1	7.73	20	10	114
Isopropylbenzene	ND	20	24.2	121	20	24.3	122	0.722	20	57	124
Methacrylonitrile	ND	20	15.8	78.8	20	16.1	80.6	2.23	20	51	139
Methyl acetate	ND	200	160	80.2	200	158	79.2	1.30	20	72	120
Methyl methacrylate	ND	20	19.6	98.2	20	20.0	100	1.86	20	46	139
Methyl tert-butyl ether	ND	40	34.5	86.2	40	33.9	84.8	1.67	20	10	200
Methylcyclohexane	ND	20	22.2	111	20	21.7	109	2.03	20	68	127
Methylene chloride	ND	20	17.8	88.8	20	18.2	90.9	2.38	20	70	134
Naphthalene	ND	20	17.9	89.3	20	18.3	91.3	2.26	20	42	140
n-Butylbenzene	ND	20	20.2	101	20	20.2	101	0.109	20	82	112
n-Propylbenzene	ND	20	19.0	94.9	20	18.0	89.8	5.51	20	73	108
p-Diethylbenzene	ND	20	22.3	112	20	22.0	110	1.21	20	65	164
sec-Butylbenzene	ND	20	19.7	98.6	20	19.5	97.4	1.17	20	76	110
Styrene	ND	20	16.2	81.2	20	14.9	74.5	8.69	20	58	152
t-Butyl alcohol	ND	200	134	67.2	200	132	66.2	1.49	20	58	152
tert-Amyl methyl ether	ND	20	17.7	88.4	20	17.1	85.6	3.25	20	62	127
tert-Butyl ethyl ether	ND	20	16.7	83.7	20	16.4	81.8	2.37	20	70	123
tert-Butylbenzene	ND	20	19.3	96.3	20	19.6	98.0	1.75	20	66	120
Tetrachloroethene	ND	20	25.1	126	20	26.9	135 *	6.95	20	71	130
Tetrahydrofuran	ND	20	0	0 *	20	0	0 *	0	20	58	149
Toluene	ND	20	19.9	99.6	20	20.2	101	1.38	24	80	117
trans-1,4-Dichloro-2-Butene	ND	20	27.4	137	20	27.3	136	0.651	20	10	309
Trichloroethene	ND	20	22.6	113	20	22.4	112	0.924	21	82	121
Trichlorofluoromethane	ND	20	21.1	106	20	20.7	104	1.87	20	74	138
Vinyl acetate	ND	20	14.5	72.3	20	14.1	70.5	2.63	20	66	135
Vinyl chloride	ND	20	14.7	73.7	20	15.5	77.4	4.85	20	45	143

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Volatile Organics by Method 8260B WorkOrder: 10070363

Method: SW8260B Lab Batch ID: R304865

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070368-11

RunID: Q_100715C-5542286 Units: ug/L Analysis Date: 07/15/2010 15:29 Analyst: JC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
cis-1,2-Dichloroethene	ND	20	20.6	103	20	20.7	103	0.437	20	67	132
cis-1,3-Dichloropropene	ND	20	18.8	93.9	20	18.8	93.9	0.0479	20	67	116
m,p-Xylene	ND	40	42.3	106	40	43.3	108	2.41	20	69	127
o-Xylene	ND	20	21.3	106	20	22.2	111	4.20	20	84	114
trans-1,2-Dichloroethene	ND	20	18.4	91.8	20	17.8	88.8	3.32	20	68	131
trans-1,3-Dichloropropene	ND	20	18.5	92.4	20	19.3	96.3	4.12	20	56	131
1,2-Dichloroethene (total)	ND	40	39.0	97.4	40	38.5	96.1	1.32	20	67	132
1,3-Dichloropropene, Total	ND	40	37.3	93.1	40	38.1	95.1	2.09	20	56	131
Xylenes,Total	ND	60	63.6	106	60	65.5	109	3.01	20	69	127
Surr: 1,2-Dichloroethane-d4	ND	50	54.1	108	50	53.2	106	1.63	30	70	130
Surr: 4-Bromofluorobenzene	ND	50	47	94.1	50	49.4	98.8	4.89	30	74	125
Surr: Toluene-d8	ND	50	45.4	90.8	50	47.0	94.1	3.56	30	82	118

Qualifiers: ND/U - Not Detected at the Reporting Limit

B - Analyte Detected In The Associated Method Blank

J - Estimated Value Between MDL And PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

10070363 Page 33

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

7/26/2010 4:48:51 PM

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

 Analysis:
 pH - water
 WorkOrder:
 10070363

 Method:
 SW9040C
 Lab Batch ID:
 R304687

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070363-01D GLV13

Laboratory Control Sample (LCS)

 RunID:
 WET_100714N-5539890
 Units:
 pH Units

 Analysis Date:
 07/14/2010 16:15
 Analyst:
 PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
рН	7.000	7.050	100.7	98	102

Sample Duplicate

Original Sample: 10070363-01

RunID: WET_100714N-5539892 Units: pH Units

Analysis Date: 07/14/2010 16:15 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
рН	8.28	8.26	0.242	5
Temperature (oC)	25.4	25.4	0	5

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Chemical Oxygen Demand WorkOrder: 10070363

Method: SM5220 C Lab Batch ID: R304745

Method Blank

Samples in Analytical Batch:

RunID: WET_100715G-5540820 Units: mg/L <u>Lab Sample ID</u> <u>Client Sample ID</u>

Analysis Date: 07/15/2010 12:30 Analyst: PAC 10070363-01H GLV13

Analyte	Result	Rep Limit
Chemical Oxygen Demand	ND	3.0

Laboratory Control Sample (LCS)

RunID: WET_100715G-5540824 Units: mg/L Analysis Date: 07/15/2010 12:30 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Chemical Oxygen Demand	104.0	101.3	97.40	85	115

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 10070350-01

RunID: WET_100715G-5540828 Units: mg/L Analysis Date: 07/15/2010 12:30 Analyst: PAC

Analyte	Sample Result	MS Spike Added	MS Result	MS % Recovery	MSD Spike Added	MSD Result	MSD % Recovery	RPD	RPD Limit	Low Limit	High Limit
Chemical Oxygen Demand	43.04	50	86.07	86.06	50	86.07	86.06	0	10	80	120

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Biochemical Oxygen Demand - 5 Days WorkOrder: 10070363

Method: SM5210 B Lab Batch ID: R304932

Method Blank

Samples in Analytical Batch:

RunID: WET_100714X-5543545 Units: mg/L
Analysis Date: 07/14/2010 11:00 Analyst: PAC

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070363-01F GLV13

Analyte	Result	Rep Limit
Biochemical Oxygen Demand	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100714X-5543547 Units: mg/L Analysis Date: 07/14/2010 11:00 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand	198.0	188.3	95.10	83.7	114

Sample Duplicate

Original Sample: 10070338-01

RunID: WET_100714X-5543548 Units: mg/L
Analysis Date: 07/14/2010 11:00 Analyst: PAC

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Biochemical Oxygen Demand	ND	ND	0	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Carbonaceous Biochemical Oxygen Demand - 5 Days WorkOrder: 10070363

Method: SM5210 B Lab Batch ID: R304933

Method Blank

Samples in Analytical Batch:

RunID: WET_100714Y-5543551 Units: mg/L
Analysis Date: 07/14/2010 11:00 Analyst: PAC

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070363-01G GLV13

Analyte	Result	Rep Limit
Biochemical Oxygen Demand, Carbonaceous	ND	2.0

Laboratory Control Sample (LCS)

RunID: WET_100714Y-5543553 Units: mg/L
Analysis Date: 07/14/2010 11:00 Analyst: PAC

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Biochemical Oxygen Demand, Carbonac	198.0	188.3	95.10	83.7	114

Sample Duplicate

Original Sample: 10070338-01

RunID: WET_100714Y-5543554 Units: mg/L
Analysis Date: 07/14/2010 11:00 Analyst: PAC

Analyte	Sample	DUP	RPD	RPD
	Result	Result		Limit
Biochemical Oxygen Demand, Carbonac	ND	ND	0	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

ABC 13

ABC 13 Gulf Water Analysis

Analysis: Ignitability WorkOrder: 10070363

Method: SW1010A Lab Batch ID: R304942

Samples in Analytical Batch:

<u>Lab Sample ID</u> <u>Client Sample ID</u>

10070363-01E GLV13

Laboratory Control Sample (LCS)

RunID: WET_100719K-5543696 Units: °F

Analysis Date: 07/19/2010 14:00 Analyst: EB1

Analyte	Spike Added	Result	Percent Recovery	Lower Limit	Upper Limit
Ignitability	81.00	81.06	100.1	97.5	102.5

Sample Duplicate

Original Sample: 10070363-01

RunID: WET_100719K-5543698 Units: °F
Analysis Date: 07/19/2010 14:00 Analyst: EB1

Analyte	Sample Result	DUP Result	RPD	RPD Limit
Ignitability	212	212	0	20

Qualifiers: ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B - Analyte Detected In The Associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value Between MDL And PQL

* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

Sample Receipt Checklist And Chain of Custody

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Sample Receipt Checklist

Wor	korder:	10070363			Received By:	т_в	
Date	e and Time Received:	7/14/2010 3:17:00 PM			Carrier name:	Client	
Tem	perature:	4.2°C			Chilled by:	Water Ice	
1. 5	Shipping container/co	oler in good condition?	Yes	✓	No 🗆	Not Present	
2. '	Custody seals intact o	on shippping container/cooler?	Yes		No 🗌	Not Present	✓
3. '	Custody seals intact o	on sample bottles?	Yes		No 🗆	Not Present	\checkmark
4. '	Chain of custody pres	ent?	Yes	✓	No 🗌		
5. '	Chain of custody sign	ed when relinquished and received?	Yes	✓	No 🗆		
6. (Chain of custody agre	es with sample labels?	Yes	✓	No 🗆		
7. 5	Samples in proper cor	ntainer/bottle?	Yes	✓	No 🗌		
8. 5	Sample containers int	act?	Yes	✓	No 🗆		
9. 5	Sufficient sample volu	me for indicated test?	Yes	✓	No 🗌		
10.	All samples received v	within holding time?	Yes	✓	No 🗆		
11. '	Container/Temp Blank	temperature in compliance?	Yes	✓	No 🗌		
12. \	Water - VOA vials hav	e zero headspace?	Yes	✓	No U	ials Not Present	
13. ՝	Water - Preservation o	checked upon receipt (except VOA*)?	Yes	✓	No 🗆	Not Applicable	
	*VOA Preservation Ch	ecked After Sample Analysis					
	SPL Representati	ve:	Cont	act Date & T	ime:		
	Client Name Contacte	ed:					
I	Non Conformance Issues:						
(Client Instructions:						

								ا د	0	4	$\overline{\cap}$,						_		7
" cakes"			-								5		_			-	-	-		X		_ Z		PM review (initial):					
(C)	J.	١. ١	<u> </u>	···········				a		<u>।</u> ।		-							×			\ <u>\</u>		ew (ii					
32468		Analyzi	aly							0				-				×					25	M revi					dy in
3		11			-	4	116	7	7 3	IW	<u>b</u> 1			-			<u> </u> ×			<u> </u>		Intact?	٠. in						
<u> </u>	nage	Requested								. H.		-				>	-	-					Ice?						A59 Hughes Drive
	100									<u></u> الحا	<u> </u>				<u> ×</u>	1												atory:	2 3
Ģ	5150 (00				····		· n			0	$\frac{1}{\Lambda}$		\times				 							y):					
SPL Workorder No.	6	-	\vdash								<u>'</u> 75	×									-			Special Detection Limits (specify):		d by:	d by:		X
Worko	10				S.	ıəui	ejuo	<u>.</u>				╟										-		imits (2. Received by:	4. Received by:	ecgived by	1
SPL		pres.					10=] H=			SZF	1= ξ	, -							~			1		tion L		2. R	4. R	<u> </u>	
		size p		J.	эцро	=X	ZOG	=](91	ICI 20S	3=8		3	S					3					Detec		1	-	Ī	1
		1		lsi	Λ = 0	17	zo†=	=†	10	lite	[=[7	3	-	<u>3</u>	×	×	=	_				pecial		time	time	time	
		ix bottle					n=A siv=				G= b=	*	>	>	٥	9	9	٥	4	P									ark.
		matrix	Tig=	-∀	lio=	:0	[ios= [ios=	=S	ter ter	ew=	-W	3	3	3	3	3	3	*	3	3				PDF	LA RECAP	0//5	J	7	
						6	S			0	grab											ks:		Email K PDF	LA R	date	date	date	500 Ambassador Caffery Parkway
				8		MStin Sternberg	£		7	0062-86	comp	×										Laboratory remarks:		E _m					Sado
				200		さい			200	8	5											atory		Fax	TX TRRP				mbas
				1		133			51541	13-5	TIME	o pr	_									Labor							A 00
				Zip		7	.50		5	Ph. 713-5	TI	2:40 pm											<u> 3</u>	Results:	Standard QCM Level 3 QC Level 4 QC		/ /		l s
	ecord					1	11	`	7		<u> </u>	//							_				RH Farrell @ @ Serv.	ents		1/	7		
	stody F				,	Ξ̈́	An	,	Brack, Pollotto Boach		LE	0//										C	9 9 8	Special Reporting Requirements	30cf	1. Relinquished by Sampler:			
۲	of Cur			F		Email:	ate		140		DATE	611											(A)	ng Rec	E (37	þ.:	þý:	
SPI Inc	Chain		72	State				0	112			1											9 1	porti	Š	iened	ished	ished	
dS.	lest &	Y	5		$^{\sim}$	2	BW F L	Teka	7	2													35	cial R	ıdard (efinquis	3 (Relinquished by:	5. Relinquished by:	ive
	is Requ	Tek	5		106	30	Ö	1	1010	2					2.								T _R	Spe			3(R		e Dr
	Analysis Request & Chain of Custody Record	7	Bissonnet		U062-872-211	र्ज	4BC 13	Ş	なず	Justin Storabern													RH		Contract	Standard		notice	☐ 8880 Interchange Drive
	®	3			578	·Į	180	Verton	48411894	.5	SAMPLE ID											arks:	2	Requested TAT	ೆ T	र्ङ्ड प्रेत		rior	nter
	N	48C	3310	Houston	3-	3		Gal,	7	153	SAM	213						1	The state of the s			t Rem		ted	<u>ج</u> ت		iys	ires p	880 I
		`	8	217	7	lact:	me/No	- 1	1			7										sultan	7	lues	r iess Da	iess Da	ess Da	regu	
(Client Name:			Phone/Fax:	Client Contact: Justin Strawers	Project Name/No.:	Site Name:	Site Location:	Invoice To:		9										Jient/Consultant Remarks:	Please	Red	1 Business Day	2 Business Days	3 Business Days	OtherRush TAT requires prior notice	
•	1	Clier	Address:	City	Phon	Clien	Proje	Site	Site 1	 nvoi												lien	7			$\vec{\Box}$	Ī		